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Abstract— Commercialization of desktop milling ma-
chines has made rapid Printed Circuit Board (PCB) fabri-
cation accessible. Unfortunately, PCB design for embedded
and robotic systems is still a tedious and time consuming
activity. In this paper, we present a technique, Just In
Time Printed Circuit Board (JITPCB) for designing PCB
systems at speeds commensurate with the capability of
desktop PCB milling machines. We propose designing
boards by writing software circuit generators that wire
together and lay out circuit components in a hierarchical
and reusable fashion. We have developed a declarative
design mechanism allowing users to specify desired in-
put and output peripherals and well as application code.
Given this input, our system produces a complete working
circuit board design, along with necessary initialization and
networking code. Our system is an open framework that
allows users to create a set of highly reusable parametric
hardware/software modules. We demonstrate our approach
by showing some common robotics applications designed
with JITPCB to show its utility and generality.

I. INTRODUCTION

A. Motivation

Robotics, Internet of Things (IoT) technology, and
interactive art have all benefited from the ubiquity of
open hardware and software platforms. This technology
revolution is exemplified by the Arduino prototyping
platform, with over one million units estimated in
distribution as of 20141. Sharing enabling technology
is relevant for communities that benefit from rapid
iteration on proof-of-concept designs, such as educators,
researchers, and hobbyists. The success of these projects
is based on unlocking creative potential for non-experts
via well designed and published standards that allow
expression of designs in high-level concepts, active
communities that support distribution and reuse of
designs, and availability of low-cost prototyping mate-
rials. Affordable rapid prototyping tools are becoming
increasingly available, such as 3D printers, laser cutters,
and milling machines, furthering creative accessibility
by reducing fabrication time and cost.

The majority of embedded systems can be described
as a collection of input and output peripherals connected
to one or more computational units with information
shared over a communication network. When design-
ing these systems, correctly matching functional goals
(control the position of a motor based on encoder input)
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Fig. 1. System description, application code, and resulting PCB for
Hello World application.

to electrical implementation details (pin and peripheral
assignments, power distribution, driver configuration)
remains a time-consuming and error-prone process,
even with expert knowledge and commercial software
tools. Furthermore, expressing these systems in a for-
mat that makes design pattern reuse and distribution
remains problematic. The field of Very Large Scale
Integration (VLSI) design for integrated circuits has
addressed many of these issues using design capture
tools with textual source code descriptions of modular,
parametric, and hierarchical design units. Inspired by
this success, we seek to transfer many of these concepts
to embedded system and schematic capture design.

We propose an approach, Just In Time Printed Cir-
cuit Board (JITPCB), to address these issues. JITPCB
expresses these systems as high-level software, which in
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turn generates one or more custom circuit board designs
and supporting infrastructure code that enables rapid
manufacturing, assembly, and application software
development for embedded systems. Fig. 1 shows a
simple “Hello World” application as an example of
our approach. By leveraging high-level programming
language concepts such as inheritance and functional
programming, design productivity and modularity is
improved over conventional schematic capture tools.
This approach is extensible with new types of peripher-
als and computational units, allowing users to integrate
custom or commercially available electrical components.
We show that our approach for Hardware/Software
(HW/SW) co-designed systems can produce a variety
of functional embedded systems with very little user-
supplied code, producing workable results for circuit
board area, use of processor units, and control loop
frequency.

B. Prior Work

There are several common approaches used to proto-
type embedded hardware. The most accessible choice
for non-expert users is to combine off-the-shelf pe-
ripheral boards, creating an aggregated modular board
system which has the desired functionality. Examples
of these modular circuit board systems include Little
Bits[3], Arduino [8] and BeagleBone [5] Shields, and
Gadgeteer[12].

Modular circuit prototyping platforms make mixing
and matching peripherals with processors easier, but
these approaches suffer from bulky and expensive
connectors and boards, poor mechanical integration,
and are still manually assembled leaving room for
(often costly) connection mistakes. Finally, these systems
do not scale well to more complex designs involving
multiple microcontrollers.

Several HW/SW co-design approaches have been
explored to automate the process of generating systems
from high-level specifications. Mehta et al. address
generation of robotic designs with modular software
descriptions, but is still dependent on manual connec-
tion of devices [7]. Slomka et al. [11] and Sarma et al.
[10] focus on describing modular hardware description
language designs for prototyping embedded systems,
but provide little evidence for being able to quickly
interface with a variety of peripheral devices.

A custom-designed PCB overcomes some these issues
but for the most part, PCB CAD tools are tedious,
manually intensive, and rely on proprietary graphical
interfaces. Users manually place components and route
wires. Any design change often results in ripping up a
portion of the design and reworking it by hand. Finally,
it is difficult to reuse physical design of higher-level
modules.

Prior work has targeted automation of the PCB
design process. PHDL [9] is a Python-based circuit
board construction kit. The user can parameterize
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Fig. 2. JITPCB system organization.

board construction, but cannot specify the layout of the
circuit components from within the software description.
Chisel [2] is a Scala-based RTL design library. Like
JITPCB, users write programs to construct circuits, but
unlike JITPCB, it has neither layout nor PCB specific
facilities, instead targeting FPGAs and ASICs. Lava [4]
is a Haskell-based circuit description language for gate
level descriptions, mostly used for FPGA programming.
Like JITPCB, Lava has a set of layout functions for hierar-
chically specifying the location of hardware components,
but to our knowledge was never used to describe circuit
board construction

No system to date has provided the level of ab-
straction afforded by JITPCB and the ability to deliver
both hardware and software together to minimize the
ensuing integration costs. Furthermore, unlike previous
approaches, our JITPCB system generates the hardware
and software for a network of microcontrollers.

II. METHODS

A. System Overview
A JITPCB embedded system design is a System

on Board (SOB), a collection of peripherals connected
to a network of Input/Output Processors (IOPs), as
illustrated in Fig. 2. Each peripheral provides a desired
functionality to the system, such as sensing ambient
light or driving a motor. The IOPs and peripherals may
be distributed across one or more physical PCBs as
required by the overall application.

An IOP is a microcontroller that exposes electrical
pin functionalities (e.g. analog input, PWM output),
and has basic power regulation and isolation features.
Peripherals are connected to IOP pins based on their
functionality requirements, and common fixed voltage
supplies are wired to peripherals and IOPs.

The first IOP allocated is designated as the Master
IOP, and the remaining are Slave IOPs. The IOPs are
connected to a data bus (I2C in our implementation)
that is used to initially program the devices from a
host system, and exchange data between the master
and Slave IOPs during operation. A handshake signal
is connected between sequential IOPs (or ground for



the master), allowing them to be assigned unique bus
IDs during startup.

Fig. 3 details the process for automatically generating
and programming a JITPCB system given a system
hardware description and application software. A user
specifies a collection of peripherals and processors
(with optional layout constraints) using the Stanza [6]
programming language, and application code in C++.
JITPCB generates PCB geometry files with the help of
the EAGLE CAD automatic trace router, as well as sys-
tem infrastructure code. This support code is compiled
with user code and microcontroller-specific libraries to
produce binaries for each IOP. The PCB files can be
turned into functional boards with a rapid-prototyping
PCB mill, or a conventional PCB etch process. Once the
boards are populated with components, a host system
programs the IOP binary files on the assembled SOB
with bootloader software to achieve a working system.

B. Hardware Description

A key aspect of JITPCB is allowing the user to describe
hardware in a declarative way (e.g. “Place and wire 64
LEDs arranged in an eight by eight grid.”) rather than an
imperative one (e.g. “Place LED0 at [6.5, 8.4] and wire to
pin PB7, place LED1 at ...”). We chose to implement this
hardware description aspect of JITPCB in Stanza because
it is an open-source functional programming language
that cleanly supports expressive syntactic extensions,
though any language that supports object orientation
and functional programming could be used in practice.
By embedding hardware description in a fully-featured
programming language, we can describe components
and systems in a modular way that enables enforcing
declarative “correct-by-construction” design principles,
with efficient and convenient code reuse, as well as
allowing users to extend the language with custom
design patterns or constraints.

JITPCB currently produces EAGLE2 format PCB files.
These files express netlist connectivity between electrical
components, as well as the physical layout and copper
routing geometry of PCBs in a well-defined XML format.
EAGLE CAD is a popular and (for small designs)
free software suite that can also automatically route
copper traces between components once connectivity
is specified. We chose to leverage the EAGLE CAD
suite in JITPCB for this autorouting feature, and widely-
available component description libraries.

Fig. 4 shows how components and peripherals are
are described in JITPCB Stanza. Components are the
lowest level of hardware objects. They specify the cor-
respondence between physical package pins and logical
connection signals. Component definitions reference an
EAGLE library and package name (e.g. the “LED” library
and “LED5MM” package), and identify the signals that
can be connected for that component using the “pad”

2https://cadsoft.io/

Component Descriptions:

defcomponent LED ("LED", "LED5MM") :
pad A
pad K

defcomponent Resistor ("RCL", "0204/7") :
pad 1
pad 2

Module Description:

defmodule PullUpLED () <: Module:
;; interface
inherit gnd
inherit v3
sig io
;; subcomponents
mod l : LED("red")
mod r : Resistor("1k")
;; netlists
sig up = [r.1, l.A]
sig v3 = [r.2]
sig gnd = []
sig io = [l.K]
;; layout
lay HBox([Rot(r,90), Rot(led,90)], 1.0)

Fig. 4. Modular hardware description in Stanza.

keyword. Components can then be grouped and wired
as modules; these specify logical connections between
signals as netlists, and optionally declare the physical
layout of components. Basic parametric layout functions
are provided such as horizontal containers (HBox) and
rotate by angle (Rot), which can easily be composed
for more complex layout functions (see Sec. III-A). The
PullUpLED module thus describes a red LED with 1 kΩ
pull-up resistor arranged horizontally.

Peripherals and IOPs are special types of modules that
respectively require or provide electrical pin functional-
ity. Fig. 5 shows how a “DigitalOut”3 pin is required for
the “io” signal for the module passed to the “bool_out”
function. Similarly, the Stanza description of an IOP
lists all of the functions available on each IOP pin.
When the add() function is called with an IOP and
peripheral reference (Fig. 1), the next IOP pin providing
the DigitalOut function is greedily assigned to be wired
to that peripheral’s designated pin.

Users are free to explicitly assign peripherals to
IOPs as in the Hello World example, but the main
convenience of the correct-by-construction paradigm
is achieved by the default behavior algorithms that
are run as a final stage of all JITPCB designs. These
procedures can assign any unspecified peripherals to
existing IOPs, or even instantiate new IOPs as required
to satisfy all peripheral pin functions. They also ensure
that power supplies are wired to all global voltage
signals (designated by the “inherit” keyword in mod-
ule descriptions), and that the appropriate data bus
and sequence signals are wired to IOPs. Finally, any

3The single tick-mark preceding DigitalOut designates an enumer-
ated “Symbol” type in Stanza.
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Fig. 3. JITPCB workflow.

components with unspecified layouts are placed in free
space on circuit boards, with user-tunable heuristics for
simplicity or signal length. In all cases, components are
placed with sufficient buffer space to guarantee that the
EAGLE autorouter will complete signal trace routing.

C. Software Model

Once a collection of peripherals and IOPs is described
in Stanza, JITPCB generates a software environment for
that particular SOB that allows high-level application
code to be run on the system that shields the user
from low-level details. The goal of this environment
is to allow the user to reference inputs, outputs, and
behaviors of peripherals without needing to know
to which IOP they are physically connected. JITPCB
achieves this abstraction by generating most of the
configuration and communication code that runs on
the Master and Slave IOPs based on the SOB hardware
description, and using the concept of peripheral ports
to share information between application code and
peripherals.

A peripheral port is effectively a member variable of
a peripheral C++ class that is synchronized between the
Master and Slave IOPs. These ports behave similarly to
memory-mapped registers in microcontroller devices in
that reading or writing them can simply transfer data,
or trigger more complex behaviors in the peripheral
driver code. For example, the application code in Fig. 1
shows reading the binary state of switches on one
IOP, and assigning that to the binary output value
of the LED on the opposite IOP. In user code, this
only requires referencing the “value” variable of the
LED and switch instances in the application code,
as the synchronization and peripheral functionality is
handled by the underlying JITPCB support software.
The JITPCB-generated master.h header that must be
included in a JITPCB application file instantiates a
peripheral object for each SOB peripheral constructed
with the appropriate pin names corresponding to those
assigned to the peripheral. It also provides the init(),

Peripheral Interface (Stanza):

defn bool_out (name:Symbol, hw:Symbol -> PeripheralModule) :
Peripheral(name, "BoolOut", hw,
[Pin(‘DigitalOut, pad#io)],
[Port("value", IntType(0))])

Peripheral Interface (C++):

// Automatically generated Peripheral and Master class
class BoolOutPeriph : public Peripheral {
public:
int value;

};
class BoolOutPeriphMaster : public BoolOutPeriph {
// Initialize and synchrnonize local class variables
// to Slave instantiations over network

};

// User completed Slave functionality class
class BoolOutPeriphSlave : public BoolOutPeriph {
public:
BoolOutDevice(PinName pin) : dout_pin(pin) { }

void step(void): {
dout_pin.write(value);

}

protected:
DigitalOutPin dout_pin;

};

Fig. 5. Peripheral HW/SW interface.

pull(), push(), and step() functions, which respectively
initialize all IOPs, retrieve and write Slave data, and
execute Slave step() functions.

The step() function in the C++ peripheral Slave
class interface (Fig. 5) specifies how a peripheral uses
port data. The Slave class constructor is also respon-
sible for configuring the microcontroller appropriately
based on the pins it has been assigned by the JITPCB
framework. JITPCB will automatically generate the
class prototype that declares all port variables indicated
in the Stanza peripheral interface, and arguments for
accepting pin name specifiers, as shown in Fig 5. Then
the Slave class must interface with processor-specific
libraries to achieve the desired physical behavior. In
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Fig. 6. Minimal IOP carrier module.

this example of the BoolOutPeriphSlave, the constructor
simply initializes a digital output driver on the provided
pin, and writes the integer stored in value to the
DigitalOutPin instance in the step() function. For our
software framework, which uses the mbed libraries [1]
for ARM microcontrollers, this will connect the pin
to ground for a 0-valued integer, and the processor
supply voltage for any other value. By default JITPCB
includes drivers for basic peripheral functions such
as digital input and output, analog input, and PWM
output. More experienced users can write drivers for
other peripheral devices, and then share them with the
community of JITPCB users to grow the number of
supported peripherals.

III. RESULTS

To demonstrate the utility of JITPCB, we present
three example applications that use a variety of digital
and analog peripherals at varying levels of integration
across one or more PCBs. These include a hand-held
version of the popular video game Pong, a two-axis
robotic arm with force feedback, and a mobile line-
following robot. To verify that the designs produced
working systems, the PCBs were fabricated with an
Othermill desktop CNC machine4, assembled by hand,
and programmed with the JITPCB bootloader. The
construction process and behavior of each system is
shown in the supplemental video.

In order to achieve more compact designs, we de-
signed a minimal IOP carrier module with a Freescale
MKL05Z32 microcontroller. This module exposes power
and I2C bus contacts at both of the short edges of the
board, and 16 I/O contacts on the long edges, making
it easy to route the bus between IOPs and I/O to
nearby peripherals. The Video Game and Robot Arm
applications use this minimal IOP module, shown in
Fig. 6.

It is difficult to present an objective measure of the
usability of our tool. Some insight can be gained by
observing the required lines of code (LoC) and the time
required to run the tool for each example; specifically
we provide:

1) SOB LoC: The Stanza LoC used to describe the
SOB hardware, excluding library module defini-
tions.

2) App LoC: The C++ LoC used in the application,
excluding the mbed framework and library mod-
ule drivers.

4https://othermachine.co
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Fig. 7. Video game circuit board.

val led_rows = Vector<Layout>()
for j in 0 to 8 do :
val led_row = Vector<Layout>()
for i in 0 to 8 do :
val name = symbol_join(["led_" i "x" j])
val led = bool_out(name, PullUpLED))
append(led_row, Space(V2f(12.0, 12.0), led))

append(led_rows, HBox(led_row))
val sliders = [slider(0), slider(1)]
val lay = HBox([VBox(join(sliders, Fill())),

HSpace(2.0), VBox(led_rows)])
val sob = SOB(lay)

Fig. 8. Video Game SOB description.

3) Compile Time: The time for JITPCB to generate
the unrouted PCB files and software headers.

4) Route Time: The time for EAGLE software to
produce routed PCB design file.

5) Board Area: The total board area of the generated
PCBs.

The sum of the SOB LoC represents the total user
input required to describe the hardware and application
software of the system, the sum of the compile and route
times represents to the total time to generate the design
files from the user input. Run times were measured
using a i7-920 processor with 12GB of RAM. Results for
each of these applications are summarized in Table I.

TABLE I
QUALITY METRICS FOR EACH OF THE APPLICATIONS.

Application SOB App Compile Route Board
LoC LoC Time (s) Time (s) Area (cm2)

Video Game 62 188 23.1 89.1 129
Robot Arm 44 99 24.3 52.9 185
Mobile Robot 34 166 24.3 32.4 92.9

https://othermachine.co


Arm mechanism. Master board. Motor board.

System of three boards.

Fig. 9. Force feedback robot arm and circuit boards.

A. Video Game
The Video Game application allows users to move

virtual paddles on an eight by eight grid LED display
using two capacitive touch sliders. Fig. 8 shows the full
listing of the hardware description code describing the
user interface layout, and Fig. 7 shows the resulting
layout of peripherals, IOPs, and resulting finished
board. This application exemplifies how a user can,
with very little code, design a parametric collection of
peripherals, and allow the unspecified details like IOP
layout and peripheral wiring to be handled by JITPCB.
The bootloader for programming the IOP network also
made the application software development process
significantly more convenient than programming each
IOP individually.

B. Robot Arm
This example shows the co-design of electronics and

software for force feedback control of a two-axis robot
arm, shown in Fig. 9. For this example we adapted the
board generation code to create separate motor driver
and master boards so they can be placed near the motors
in the actual robot. This code automatically generates
power and communication bus connectors, allowing
convenient specification of a physically distributed
modular system. As the two motor driver boards are
identical, they can be interchanged on the robot, and the
sequence assignment algorithm will correctly identify
their location and apply control appropriately.

Each motor controller board contains a motor driver
with an integrated current sensor and drives a gear-
motor with position feedback from a quadrature encoder.
The motor control boards run a local current-sensing
torque control feedback loop, while the master runs
a task-space impedance (spring and damping element
only) controller. By separating these control loops so
that one runs in the peripheral Slave class of the motor
controllers, and the other on the Master, we achieve
parallel distributed execution of code for reasonable
real-time performance of the overall arm control.

C. Mobile Robot
The mobile robot uses a line-sensing camera to

command a differential-drive robot chassis to follow

Mobile Robot. Board detail.

Fig. 10. Mobile line-following robot and circuit board.

a line on the ground. To show how the IOP module
can be generalized, this application uses the more
powerful and commercially available Freescale FRDM-
KL25Z development board instead of the minimal IOP
carrier board. Extending the framework to use this
commercial board as an IOP only required describing
the pin functionalities of the development board, and
adding the pin header footprint to the IOP library. In
general, a user will also need to adapt the on-board
bootloader code and bus communication drivers when
adding a new type of processor as an IOP. This example
also demonstrates a more complex peripheral electrical
interface for the line-scan camera sensor, which requires
synchronization of analog input and digital clocking to
read each pixel.

IV. CONCLUSION

We have introduced JITPCB and SOB, techniques
for software defined hardware defined software which
provide a powerful and practical PCB prototyping
methodology. Representations of IOPs and HW/SW
peripherals objects allow the system to synthesize
hardware along with made-to-fit software, dramatically
lowering integration challenges. Programmers write
applications in an implementation independent fashion
and let the design software glue together the various
implementation artifacts. JITPCB represents an open
framework for designing PCBs which we hope will
allow us to realize the dream of a library of flexible
components as digital artifacts.

While rapid iteration over designs benefits those who
prototype embedded systems professionally, we also
believe this is applicable to education, where students
may not have the luxury of spending half a semester
learning a board design tool. Providing a higher level
of design would allow students to focus more on
core material, while affordable fabrication facilitates
integration with classes on a budget.
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