Evaluation of RISC-V RTL with FPGA-Accelerated Simulation

Donggyu Kim, Christopher Celio, David Biancolin, Jonathan Bachrach, Krste Asanovic
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
{dgkim, celio, biancolin, jrb, krste}@eecs.berkeley.edu

ABSTRACT

This paper presents a fast and accurate simulation methodology for
performance, power, and energy evaluation in the hardware/software
co-design flow. Cycle-level microarchitectural software simulation
is the bottleneck of the hardware/software co-design cycle due to
its slow speed and the difficulty of simulator validation. While sam-
pling methodologies can ameliorate some of these challenges, we
show that it is often insufficient for rigorous design evaluations. To
circumvent the limitations of software simulation and sampling, we
employ MIDAS, which automatically generates FPGA-accelerated
simulators from RTL. These simulators are not only up to three
orders-of-magnitude faster than existing microarchitectural soft-
ware simulators, but also truly cycle-accurate, as the same RTL
is used to build the silicon implementation. MIDAS builds on the
work of Strober, namely by increasing simulator execution rate (up
to tenfold) and by including an abstract L2 cache model to simulate
more realistic systems without the corresponding RTL implemen-
tations. We simulated the productized, in-order processor, Rocket,
and the industry-competitive, out-of-order processor, BOOM. To
our knowledge, this is the first paper to present performance, power,
and energy evaluations from RTL simulations running the whole
SPEC2006int benchmark suite with its reference inputs.

1 INTRODUCTION

Performance evaluation for next-generation hardware designs is a
vital component of the system design process. To do so, cycle-level
microarchitectural software simulators (e.g. [3, 15, 22]) are widely
used by computer architects. However, these simulators are too
slow to run real-world applications without sampling. Moreover,
various kinds of errors can be introduced because of the abstractions
used by these simulators [9].

Simulation sampling is another popular complement to microar-
chitectural software simulators. Phase-based sampling with ba-
sic block analysis [17] does not provide statistically-guaranteed
error bounds. However, statistical sampling provides confidence
intervals, but special care is necessary to address microarchitec-
tural state warming problems [23]. To make matters worse, simu-
lation sampling can be misleading for performance evaluations of
managed-language applications whose execution paths depend on
microarchitectural state of the system.

On the other hand, if RTL designs are available, they can be used
to accurately evaluate not only cycle-level performance but also
cycle time, area, and power using commercial CAD tools without in-
troducing modeling errors. However, evaluating RTL designs using
software simulation is very slow, preventing design space explo-
ration of various hardware configurations with realistic software
applications.

In this paper, we present a simulation methodology to evalu-
ate RTL designs running real-world software, taking advantage of

the RISC-V infrastructure. Unlike the previous simulation method-
ologies, neither simulation sampling nor more abstract modeling
is adopted. Instead, we adopt the methodology described by Kim
et al. in Strober [10]. First, FPGA-accelerated simulators are auto-
matically generated from RTL designs. These simulators are up to
three-orders-of-magnitude faster than existing cycle-level microar-
chitectural software simulators. Then, we take random RTL-state
sample snapshots from the FPGA simulation, which are replayed
in RTL or gate-level software simulation for power estimation.
The main contributions of this paper are as follows:

e We demonstrate the importance of FPGA-accelerated sim-
ulation of RTL designs in agile hardware design method-
ologies [11]. This is because microarchitectural software
simulators are insufficiently fast and accurate for both tra-
ditional microprocessors and custom hardware accelerators
running various kinds of software applications.

e We present an open-source FPGA-simulation methodology,
MIDAS. ! In MIDAS, we improve Strober [10] by increasing
the speed of generated simlators rate by up to ten times. This
enables designers to evaluate the hardware designs with the
whole execution of realistic benchmark suites. We also in-
clude an abstract L2-cache model to simulate more realistic
systems even without the corresponding RTL implementa-
tions.

e We present a case study in which we evaluate the perfor-
mance, component-wise power, and the energy of a pro-
ductized in-order processor, Rocket [1], and an industry-
competitive superscalar out-of-order processor, BOOM [7],
using their RTL implementations by running the SPEC2006int
benchmark suite with its reference inputs.

2 DESIGN EVALUATION PRACTICE

This section proposes a new design evaluation practice in the hard-
ware/software co-design flow. Section 2.1 explains why perfor-
mance, power, and energy evaluation using RTL designs instead
of microarchitectural simulators is necessary for the recent hard-
ware/software co-design trends. Section 2.2 demonstrates why the
complete execution of real-world applications instead of simulation
sampling is required for accurate evaluations in hardware/software
co-optimizations.

2.1 Microarchitectural Simulation vs.
FPGA-Accelerated RTL Simulation

Figure 1 shows two alternatives for performance evaluation in the
computer system design process. Historically, cycle-level microar-
chitectural software simulation (e.g. [3, 15, 22]) has been widely-
used by computer architects for performance evaluation (Figure 1a).
Whereas RTL implementation has been tedious, labor-intensive and

!Beta v0.1 is available at https://github.com/ucb-bar/midas

¥ ¥
Software Hardware
Development Specification
parch RTL
Simulation Implementation
Performance 5 CAD Tools
Evaluation §
%‘.
3

(a) Performance Evaluation using Microarchitectural Simulation.

v L]
Software Hardware
Development Specification
[] [2
FGPA-accelerated [+] RTL
Simulation Implementation
¥ !
Performance CAD Tools
Evaluation
L 7

(b) Performance Evaluation using RTL Designs.

Figure 1: Performance Evaluation Methodologies in the Hardware/Software Co-design Flow.

difficult to modify and verify, microarchitectural software simula-
tors are flexible and easy to use. For this reason, high-level software
simulation remains an important tool to guide system design in the
early stages of system design, before RTL design has commenced.
Ease-of-use concerns notwithstanding, evaluating RTL designs re-
mains extremely slow when using commercial CAD tools, and thus,
high-level simulation was necessary to evaluate the target systems
with real-world applications.

However, microarchitectural software simulation becomes the bot-
tleneck of the recent hardware/software co-design cycles for two main
reasons. First of all, microarchitectural software simulators should
be carefully validated against RTL designs and real systems. This is
only feasible when new designs to not differ tremendously from
either existing hardware, or similar designs from previous design
cycles that have already been validated. As shown in Figure 1a,
there are frequent feedback loops from the CAD tools to the RTL
designs in the hardware design cycle in order to improve the quality
of the silicon implementation. Whenever any changes are made
to the RTL designs, microarchitectural software simulators should
also be carefully tuned. Moreover, microarchitectural software sim-
ulators should be exhaustively validated against the silicon imple-
mentations running real-world software. Otherwise, various kinds
of evaluation errors can be introduced by the abstraction and the
modeling of the target systems [9]. Recent hardware design trends
are moving toward heterogeneous SoCs with a plethora of custom
hardware accelerators, has made simulator validation more difficult
as it has become harder to find an existing system against which to
validate the simulator.

To make matters worse, microarchitectural software simulation
is too slow to run the full execution of the today’s realistic work-
loads with very complicated hardware designs. In general, any
non-trivial modern application executes trillions of dynamic in-
structions, making them practically impossible to simulate even
with the fastest microarchitectural software simulator. For example,
it takes roughly a month to simulate one trillion instructions with a
400 KIPS simulator [15]. Therefore, the slow speed of microarchitec-
tural software simulation prevents an agile hardware development
approach [11], which is required for rapid hardware/software co-
optimizations.

In this paper, we propose FPGA-accelerated RTL simulation to re-
solve the difficulty of performance, power, and energy evaluation for
the hardware/software co-design flow as shown in Figure 1b. First
of all, RTL implementation is becoming more productive for com-
puter architects thanks to various hardware construction languages

(e.g. [2], [14], [16], [13], [19]) that greatly improve the expressiv-
ity over existing hardware description languages like Verilog and
VHDL. In addition, there are an increasing number of open-source
RISC-V RTL designs (e.g. [1, 7]) with which to bootstrap a new
project, dramatically reducing RTL development time.

Next, this methodology is truly cycle-accurate as the FPGA-
accelerated simulators are generated using automatic transforma-
tions on the same RTL design that will be consumed by VLSI CAD
tools to produce he silicon implementations through the CAD tools.
These transformations preserve the RTL behavior of the design, and
thus do no introduce modeling errors. Thus, system designers do
not need to re-validate their simulator after an RTL design change,
greatly easing hardware / software co-optimization, where the RTL
design may be frequently modified.

Finally, using FPGAs for performance evaluation increases the
simulation speed by multiple orders of magnitude over existing
cycle-level microarchitectural software simulation, which is well
demonstrated by the previous work [10, 18]. Since FPGA-accelerated
simulators can execute tens of MIPS, it becomes possible to evaluate
complete benchmark suites, like SPEC2006int, on a cycle-accurate
model of the design.

2.2 Simulation Sampling vs. Full Execution

Simulation sampling is a popular technique to overcome the slug-
gishness of cycle-level microarchitectural software simulators. There
are two major approaches: phase-based sampling [17] and statistical
sampling [23].

Phase-based sampling [17] provides simulation points through
phase analysis on dynamic basic-block traces. Here, the underlying
assumption is the dynamic execution of software consists of short
periods of phases and each phase will exhibit similar microarchitec-
tural behavior, and thus IPC, whenever repeated. The simulation
points produced by this methodology are those centered about
the basic blocks that are most frequently visited. This approach
provides no guaranteed error bounds.

However, this is not necessarily true because the periods of
phases can be lengthy and the performance characteristics of each
phase depend on the dynamic state of the systems. Figure 2 shows
a periodic sampling average of IPC every 100-million cycles over
the entire execution of 401.bzip2 in the SPEC2006int benchmark
suite with its reference input, running on BOOM-2w (Table 1).
Even though there are some distinct execution phases, each phase
has a non-trivial length period and shows different performance

0 500 1000

1500 2000 2500 3000

Instructions (B)

Figure 2: A periodic sampling of the IPC of BOOM-2w (see Table 1) running 401.bzip2. A sample was collected every 100
million cycles: each point represents the average IPC over that 100 million cycle interval. Samples were collected from the

FPGA as the simulation executed.

characteristics when repeated. Thus, running a couple of million
instructions in dozens of representative points from phase analysis is
not enough to characterize the performance of real-world applications.

On the other hand, statistical simulation sampling [23] provides
performance estimates with statistically-bounded errors. The main
idea is the intervals between detailed simulation points are fast-
forwarded using fast functional simulation. However, for this ap-
proach to be effective, the microarchitectural state of the machine
must be reconstituted in a "warming" phase.This requires consider-
able execution time in the detailed simulator even before evaluating
the sample point.

Various methods (e.g. [22]) have been suggested to address this
state warming problem, most of which propose keeping track of
some microarchitectural state in functional simulation. Of course,
this slows down the fast functional simulation, making it difficult
to regenerate samples points of the machine. Thus, architects must
choose between either the increased design iteration time to per-
form sample recollection, or potential simulation inaccuracy that
may result from using stale samples. represent the machine. Fi-
nally, it is not clear what subset of state should be warmed for
non-traditional hardware designs such as custom hardware accel-
erators.

In conclusion, there are often cases simulation sampling is not
the right tool for design evaluation in the hardware/software co-
design flow. In these cases, we suggest the complete simulation of
realistic workloads with fast and cycle-accurate FPGA-accelerated
simulator generated from RTL designs for performance, power, and
energy evaluation.

3 SIMULATION METHODOLOGY

This section explains how MIDAS is used in performance, power,
and energy evaluations of an RTL design. Section 3.1 shows how
an arbitrary RTL design is mapped to an FPGA-hosted simulation
model. Section 3.2 then explains how this is composed with CPU-
hosted software models, and abstract FPGA-hosted timing models
within a FPGA-accelerated simulator.

3.1 FPGA-Accelerated Simulators from RTL

For the performance evaluation methodology suggested in Section 2
to be feasible, we improve Strober [10] to automatically generate

an FPGA-accelerated simulator from any RTL design. Any MIDAS-
generated simulator is a FAME1 simulator [18] whose cycle-level
timing is modeled as decoupled timing-token exchanges between
simulation models.

We use FIRRTL compiler [12] passes to transform RTL into an
FPGA-hosted model. Unlike Strober [10], whose passes were em-
bedded in the Chisel2 compiler, our methodology can be used on
designs written any HDL that can be mapped to FIRRTL. The passes
themselves, however, remain similar. As shown in Figure 3, macro
mapping optionally maps technology-independent memory blocks
to technology-dependent macro blocks for power estimation. A
FAME]1 transform is performed to decouple the target clock from
the host clock. In addition, scan chains are optionally added to
capture state snapshots for replays in software RTL / gate-level sim-
ulation for power estimation. Next, simulation mapping is applied
to augment the logic for timing token communications. Finally,
platform mapping adds platform-specific logic to the simulation
modules.

For power estimation, we randomly sample 50 RTL state snap-
shots from FPGA-accelerated simulation. The target designs are syn-
thesized 2 with the Synopses 32nm Educational Technology using
the scripts generated by an open source CAD tool flow [8]. We re-
play the snapshots in software RTL simulation. 3 The post-synthesis
design and the RTL signal activities from the sample replays are
provided to power analysis tool. * Note that unlike statistical sam-
pling for microarchitectural simulation [23], our methodology has
no state warming problems in gate-level simulation as the exact
RTL state snapshots are taken from FPGA simulation.

The details are also described by Kim et al. [10]

3.2 Mapping Simulation to the FPGA Host

Another challenge is how to map heterogeneous simulation models,
including the transformed-from-RTL models, software models, and
abstract timing models, to the FPGA host platform for fast simu-
lation. Figure 4 shows how the target designs are mapped to the
FPGA host platform. We use the Xilinx Zynq ZC706 boards for the
case study but other FPGA platforms can be used in principle.

2Synopsys Design Compiler®Version L-2016.03-SP1.
3Synopsys VCS®Version L-2016.06-1.
4Synopsys PrimeTime® PX Version K-2015.12-SP3.

Target RTL Design

[Simulation Mapping__|
|

| Platform Mapping
o SRR L e e

FPGA-Accelerated RTL Simulator

Figure 3: Custom Compiler Passes to Generate FPGA-
Accelerated RTL Simulators.

VRS VS
L2 Cache
I/ 0 Processor / Main
Devices Memory

FPGA Board(e.g. Xilinx Zynq)
Software FPGA

) 8 Memory
Simulation 110 L2 Cache /
» Driver <‘,> Endpoints »» ?;t:\;n <4‘:>

Figure 4: Target Design Mapping to the FPGA Host Platform.

FIRRTL Compiler

Board DRAM

The processor models are generated from RTL designs and mapped
to the FPGA (Section 3.1). The I/O devices are modeled in software
and run alongside the simulation driver as their transactions are
infrequent. Kim et al. [10] report the simulation rate is 3.56 MHz,
which is not fast enough to run real-world workloads to comple-
tion, due to the communication overhead between the CPU-hosted
software models and the FPGA-hosted RTL models. We optimize
the communications by having I/O endpoints, special hardware wid-
gets that translate timing tokens to high-level transactions and
vice versa. In other words, instead of exchanging low-level timing
tokens, the I/O devices efficiently communicate the processor with
high-level transactions through I/O endpoints. As a result, the av-
erage simulation rate of BOOM-2w is 18 MIPS on average for the
SPEC2006int benchmark suite.

We implement an abstract timing model for L2 caches and DRAM
hosted on the FPGA, while the actual data are hosted on the board
main memory. Using an abstract model for the L2 cache was com-
pelling for three reasons. Firstly, the current version of RocketChip
does not generate L2 caches, it is easier at first to write an ab-
stract L2 models, than implemented a complete L2 cache. Two,
abstract models can provide runtime configurable parameters with
low overhead. In our case, the size, associativity, and the latency
of L2 caches can be reconfigured without needing to recompile an
FPGA bitstream. Finally, since we model the timing of the memory
systems by only keeping the tags of L2 caches on the FPGA, we
can model an L2 cache that would be too large to fit on our FPGA.
However, the downside is the simulation needs to stall even with
L2 cache hits to obtain the actual data from the board main mem-
ory, slightly slowing down the simulation rate. Of course, using an

Cycles

30 [P |
20 ”
et mm bt od

Tk ke Ty Tk 16407 407 4% 255 520, Lig ¥ty I irg M

Array Size

Figure 5: Memory System Timing Validation of BOOM-2w
with a 16 KiB L1 Data Cache. A pointer-chase through in-
creasing sizes of arrays demonstrates the load-to-load la-
tency of different levels of the memory hierarchy.

abstract model introduces the aforementioned modeling errors and
validation challenges.

Figure 5 shows the timing validation of the memory systems
using a pointer-chase benchmark [4]. The target design observes
the 16KiB L1 data cache (6 cycles), the 1MiB L2 data cache (6 + 23
cycles), and the main memory (6 + 23 + 80 cycles) as configured in
Table 1.

4 TARGET DESIGNS AND BENCHMARKS

Parameter Rocket BOOM-2w
Fetch-width 1 2
Issue-width 1 3
Issue slots - 20
ROB size - 80
Ld/St entries - 16/16
Physical registers | 32(int)/32(fp) 110
Branch predictor - gshare: 16 KiB history
BTB entries 40 40
RAS entries 2 4
MSHR entries 2 2
L1 $ capacities 16 KiB or 32 KiB
ITLB and DTLB reaches 128 KiB / 128 KiB
L2 $ capacity and latency 1 MiB / 23 cycles
DRAM latency 80 cycles

Table 1: The Parameters for the Two Target Processors.

Section 4.1 explains RocketChip [1] and BOOM [7] used as
the target hardware designs in this paper. Section 4.2 covers the
SPEC2006int benchmark suite used for the case study.

4.1 Target Designs

RocketChip [1] is an open-source SoC generator suitable for re-
search and industrial purposes. Rather than being a single instance

Benchmarks | Instructions (T) || Benchmarks | Instructions (T)
400.perlbench 2.48 458.sjeng 2.85
401.bzip2 3.08 462.libquantum 2.09
403.gcc 1.37 464.h264ref 5.07
429.mcf 0.29 471.omnetpp 0.61
445.gobmk 2.04 473.astar 1.05
456.hmmer 2.95 483.xalanbmk 1.10

Table 2: Dynamic Instruction Counts with RISC-V ISA.

of an SoC design, RocketChip is a hardware design generator, ca-
pable of producing many design instances from a single piece of
Chisel [2] source code. Multiple industry products as well as sili-
con prototypes are manufactured using RocketChip. A RocketChip
instance generally consists of three major components: processors,
a cache hierarchy, and an uncore.

RocketChip instantiates an in-order processor, Rocket, by default,
but also supports various core implementations including an out-of-
order processor, BOOM. Rocket is a 5-stage in-order processor that
implements the RISC-V ISA [20, 21]. It has an MMU that supports
page-based virtual memory, a non-blocking data cache, and a fron-
tend with branch prediction. Branch prediction is configurable and
provided by a branch target buffer (BTB) with its associative branch
history table (BHT), and a return address stack (RAS). BOOM [7] is
a superscalar out-of-order processor with a unified physical register
file with configurable fetch widths, issue widths, and instruction
window sizes. BOOM supports full branch speculation using a BTB,
RAS, and a parameterizable backing predictor. BOOM is written
in only 14K lines of Chisel code as it reuses many of RocketChip’s
components.

A RocketChip cache hierarchy can include L1 instruction caches,
L1 blocking or non-blocking data caches, and TLBs with config-
urable sizes, associativities, and replacement policies. A RocketChip
uncore consists of networks of cache coherent agents and the asso-
ciated cache controllers for multi-core systems. These components
are shared across both BOOM and rocket-based instances.

Table 1 shows the base parameters for two target processors
used in the case study unless otherwise stated.

4.2 Benchmarks

The SPEC2006int benchmark suite is widely-used for computer
architecture research as well as performance evaluation of real
systems. However, only small fractions of the whole benchmarks
are evaluated in computer architecture research using microar-
chitectural software simulators due to the non-trivial execution
lengths as shown in Table 2. All benchmarks are compiled using
Speckle [5], and run on RISC-V Linux kernel version 4.6.2. For
each benchmark, we built a BusyBox image including all necessary
files for a given benchmark within an initramfs. Unfortunately,
445 . gobmk, 456. hmmer, and 462.1ibquantum fail on the current
version of BOOM-2w, and thus are excluded in its evaluations.

5 CASE STUDY

Figure 6 shows the IPCs of Rocket and BOOM-2w with the config-
urations in Table 1 for the SPEC2006int benchmark suite with its
reference inputs. The IPCs are computed from the complete exe-
cution of each benchmark. Note that the parameters of BOOM-2w
are chosen to approximate the configuration of the ARM Cortex-
A9 processor. For reference, the IPCs of ARM Cortex A9 for the
SPEC2006int benchmark suite are also presented in Figure 6.

In this case study, we are mainly interested in the performance
impact of the increase in the L1 cache sizes from 16 KiB to 32 KiB. As
seen from Figure 6, there are big performance improvements for sev-
eral benchmarks (e.g. 400.perlbench, 458.sjeng, 464.h264ref)
from this change. Therefore, it is desirable to have 32 KiB L1 caches
unless it lengthens the critical path.

To understand the performance evaluations more deeply, we
collect more performance statistics from the performance coun-
ters. Figure 7 shows the misses per kilo instructions (MPKIs) of
BOOM-2w. Notably, some benchmarks such as 471.omnetpp and
483.xalancbmk suffer from a large number of indirect branch mis-
predicts, which indicates the BTB size need to be increased.

We can also figure out the pipeline utilization by examining the
issue queue utilization. Intuitively, issued slots per cycle of the issue
queue are equal to IPC. As shown in Figure 8, more than 60 % of
issue slots are wasted. The first case is issue slots are empty, which
is caused by the frontend hazards including branch mispredicts and
instruction cache misses, and/or lack of pipeline resources such as
physical registers and ROB entries. For example, 403. gcc exhibits
lots of empty slots even though it has relatively small frontend MP-
KIs, which implies the benchmark wants more pipeline resources.
Another case is issue slots are neither empty nor issued due to the
backend hazards. For instance, 429.mcf and 471.omnetpp suffer
from high data cache miss rates, therefore having a large fraction
of non-empty non-issued slots.

We can check whether or not the designs are realistic by exam-
ining their power consumption. Figure 9 shows the power break-
downs for Rocket and BOOM-2w with 32 KiB L1 caches for the
SPEC2006int benchmarks, which are computed using 50 random
sample snapshots with 95% confidence. We can see out-of-order
processors can easily be power inefficient. Specifically, the regis-
ter file and the rename logic are unrealistic as they consume up
to 40% of the total power. Improving energy efficiency is a key
motivation of a new version of BOOM [6], which has a different
microarchitecture from the current version.

Figure 10 shows the energy efficiencies of Rocket and BOOM-2w
with 32 KiB L1 caches. BOOM-2w is much less energy efficient than
Rocket: BOOM-2w burns more power (Figure 9) without propor-
tionally increasing IPC (Figure 6). Notably, the energy efficiency of
429 .mcf is worse than any other benchmarks although it consumes
the least power. Therefore, evaluating just performance or power
but not both is insufficient if energy efficiency is a primary concern,
as it is for most classes of computer systems. The methodology and
the tools suggested in this paper along with the RISC-V infrastruc-
ture enables fast and accurate evaluations on energy efficiency.

6 CONCLUSION

In this paper, we presented MIDAS, an open-source, performance,
power, and energy evaluation methodology using RTL designs by
running realistic workloads to completion in FPGA simulation. We
demonstrated cases in which microarchitectural software simu-
lation with simulation sampling is not sufficiently fast and accu-
rate for the hardware/software co-design flow. To address these
issues, we suggest using FPGA-accelerated simulators that have
been generated from the RTL design. These simulators are both
fast, up to three orders-of-order-magnitude faster than cycle-level
microarchitectural software simulators, and truly cycle-accurate, as
they use RTL identical to that used in the silicon implementation.
This enables the full execution of the full-software stack on long-
running applications with little loss of fidelity. We demonstrated
how this methodology can be employed in practise by running the
SPEC2006int benchmark suite with its reference inputs to comple-
tion on Rocket and BOOM.

0.0

600

500

N
I}
s}

Power (mW)
W
8

200

141

il IIIH w00l I|| N ol nnll

400.perlbench

MPKI
]

Issue Slots / Issue Width

Rocket [_-!

BOOM-2w

401.bzip2

403.gcc

429.mcf 445.gobmk 456.hmmer 458.sjeng 462.libquantum 464.h264ref 471.omnetpp 473.astar 483.xalancbmk geomean

BRocket 16KiB L1 BRocket 32KiB L1 @BOOM-2w 16KiB L1 @BOOM-2w 32KiB L1 oCortex A9

Figure 6: The IPCs of Rocket, BOOM-2w, and Cortex A9 for the SPEC2006int Benchmarks.

\ﬁi% 5I5
lll_ll_ l___ll- Alle_ II I___ II-_II_ o M__ II-n II I___III IIln II

400.perlbench

400.perlbench

4

401.bzip2 403.9cc 429.mcf 458 sjeng 464.h264ref 471.omnetpp 473.astar 483 xalancbmk
mConditional Branch mindirect Branch @lL1|-Cache @lTLB mL1D-Cache @mDTLB mL2Cache

Figure 7: The MPKIs of BOOM-2w for the SPEC2006int Benchmarks.

100
80
60 oNon-issued Slots
0 BEmpty Slots
mlssued Slots
20
0

401.bzip2 403.gcc 429.mcf 458.sjeng 464.h264ref 471.omnetpp 473.astar 483.xalancbmk

Figure 8: The Issue Queue Utilizations of BOOM-2w for the SPEC2006int Benchmarks.

Rocket I].'

soom-2w [T = —

400.perlbench 401.bzip2

Rocket Il.'

BOOM-2w

403.gcc

O Misc

B Uncore

B 1 D-cache control
B L1 D-cache meta + data
BL1 |-cache

BROB

BLSU

OFPU

Blinteger Unit

B ssue Logic
ORegister File

O Rename + Control

Rocket [Tk

BOOM-2w

Rocket Il.-'

BOOM-2w

@ Branch Predictior
B Fetch Unit

Rocket l-"

BOOM-2w

Rocket m

OOM-2w

Rocket l.-'
soow-2w [T

Rocket I."
Rocket l.-'
Rocket [T
soom-2w I M=
Rocket I]."

B

429.mcf 445.gobmk 456.hmmer 458.sjeng 462.libquantum 464.h264ref 471.omnetpp 473.astar 483.xalancbmk

Figure 9: The Power Estimates of Rocket and BOOM-2w with 32 KiB L1 Caches for the SPEC2006int Benchmarks.

EPI(pJ /Inst)

1000

800

@
o
o

I
S
=3

N
=3
o

0

19234 1027.0

BRocket 32 KiB L1
I I I I I BBOOM-2w 32 KiB L1
mel m m m atl OE m H

400.perlbench 401.bzip2 403.gcc 429.mcf 458.sjeng 464.h264ref 471.omnetpp 473.astar 483.xalancbmk

Figure 10: The Energy Efficiencies of Rocket and BOOM-2w with 32 KiB L1 Caches for the SPEC2006int Benchmarks.

ACKNOWLEDGEMENT

Research partially funded by DARPA Award Number HR0011-12-
2-0016, the Center for Future Architecture Research, a member of
STARnet, a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA, and ASPIRE Lab industrial sponsors
and affiliates Intel, Google, HP, Huawei, LGE, Nokia, NVIDIA, Ora-

cle,

and Samsung. Any opinions, findings, conclusions, or recom-

mendations in this paper are solely those of the authors and does
not necessarily reflect the position or the policy of the sponsors.

REFERENCES

(1]
(2]

[10]

(11

[12]

=
&

[14

[15]

[16

[17

[18]

[19

[20

[21]

[22

[23

Krste Asanovi¢ et al. 2015. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17.

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanovi¢. 2012. Chisel: constructing
hardware in a scala embedded language. In DAC.

Nathan Binkert et al. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39 (Aug 2011).

Christopher Celio. 2010. The ccbench micro-benchmark collection. (2010).
https://github.com/ucb-bar/ccbench/wiki

Christopher Celio. 2014. Speckle: A wrapper for the SPEC CPU2006 benchmark
suite. (2014). https://github.com/ccelio/Speckle.git

Christopher Celio, Pi-Feng Chiu, Borivoje Nikoli¢, David A. Patterson, and Krste
Asanovi¢. 2017. BOOMv2: an open-source out-of-order RISC-V core. In First
Workshop on Computer Architecture Research with RISC-V (CARRV).
Christopher Celio, David A. Patterson, and Krste Asanovi¢. 2015. The Berkeley
Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parame-
terized RISC-V Processor. Technical Report UCB/EECS-2015-167.

Palmer Dabbelt. 2017. PLSI: A Portable VLSI Flow. Master’s thesis. University of
California, Berkeley.

Anthony Gutierrez, Joseph Pusdesris, Ronald G. Dreslinski, Trevor Mudge, Chan-
der Sudanthi, Christopher D. Emmons, Mitchell Hayenga, and Nigel Paver. 2014.
Sources of error in full-system simulation. In ISPASS.

Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer,
Yunsup Lee, Jonathan Bachrach, and Krste Asanovi¢. 2016. Strober : Fast and
Accurate Sample-Based Energy Simulation for Arbitrary RTL. In ISCA.

Y. Lee et al. 2016. An Agile Approach to Building RISC-V Microprocessors. IEEE
Micro 36, 2 (Mar 2016), 8—20.

Patrick S Li, Adam M Izraelevitz, and Jonathan Bachrach. 2016. Specification for
the FIRRTL Language. Technical Report UCB/EECS-2016-9.

Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL : A Unified
Framework for Vertically Integrated Computer Architecture Research. In MICRO.
R. Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high level
specifications. In MEMOCODE.

Avadh Patel, Furat Afram, and Shunfei Chen. 2011. MARSSx86: A full system
simulator for x86 CPUs. In DAC.

Ofer Shacham, Sameh Galal, Sabarish Sankaranarayanan, Megan Wachs, John
Brunhaver, Artem Vassiliev, Mark Horowitz, Andrew Danowitz, Wajahat Qadeer,
and Stephen Richardson. 2012. Avoiding game over: Bringing design to the next
level. In DAC.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Auto-
matically characterizing large scale program behavior. In ASPLOS.

Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanovi¢, David
Patterson, and David Patterson Zhangxi Tan, Andrew Waterman, Henry Cook,
Sarah Bird, Krste Asanovi¢. 2010. A Case for FAME: FPGA Architecture Model
Execution. In ISCA.

J.I Villar, J. Juan, M.J. Bellido, J. Viejo, D. Guerrero, and J. Decaluwe. 2011. Python
as a hardware description language: A case study. In Southern Conference on
Programmable Logic (SPL).

Andrew Waterman, Yunsup Lee, Krste Asanovi¢, and David Patterson. 2016. The
RISC-V Instruction Set Manual: Privileged Architecture Version 1.9.1. Technical
Report UCB/EECS-2016-161.

Andrew Waterman, Yunsup Lee, David Patterson, and Krste Asanovi. 2016.
The RISC-V Instruction Set Manual: User-level ISA Version 2.1. Technical Report
UCB/EECS-2016-118.

Thomas F T.F. Wenisch, R.E. Roland E R.E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and James C J.C. Hoe. 2006. SimFlex: Statistical Sampling of Computer
System Simulation. IEEE Micro 26, 4 (Jul 2006), 18-31.

R.E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe. 2003. SMARTS: accelerat-
ing microarchitecture simulation via rigorous statistical sampling. In ISCA.

https://github.com/ucb-bar/ccbench/wiki
https://github.com/ccelio/Speckle.git

	Abstract
	1 Introduction
	2 Design Evaluation Practice
	2.1 Microarchitectural Simulation vs. FPGA-Accelerated RTL Simulation
	2.2 Simulation Sampling vs. Full Execution

	3 Simulation Methodology
	3.1 FPGA-Accelerated Simulators from RTL
	3.2 Mapping Simulation to the FPGA Host

	4 Target Designs and Benchmarks
	4.1 Target Designs
	4.2 Benchmarks

	5 Case Study
	6 Conclusion
	References

