
FASED: FPGA-Accelerated Simulation and Evaluation of DRAM
David Biancolin1, Sagar Karandikar1, Donggyu Kim1, Jack Koenig1, Andrew Waterman2,

Jonathan Bachrach1, Krste Asanović1,2
1ADEPT Lab, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA

2SiFive Inc., San Mateo, California, USA
{biancolin,sagark,dgkim,jack.koenig3,waterman,jrb,krste}@eecs.berkeley.edu

ABSTRACT

Recent work in FPGA-accelerated simulation of ASICs has shown
that much of a simulator can be automatically generated from ASIC
RTL. Alas, these works rely on simple models of the outer cache
hierarchy and DRAM, as mapping ASIC RTL for these components
into an FPGA fabric is too complex and resource intensive. To
improve FPGA simulation model accuracy, we present fased, a
parameterized generator of composable, high-fidelity, FPGA-hosted
last-level-cache and DRAM models. fased instances are highly per-
formant, yet they maintain timing faithfulness independently of
the behavior of the host-FPGA memory system. For a given sched-
uling policy, a single fased instance can model nearly the entire
space of realizable single-channel DDR3 memory organizations,
without resynthesizing the simulator RTL. We demonstrate fased
by integrating it into a flow that automatically transforms RTL
for multicore RISC-V processors into full-system simulators that
execute at up to 150 target MHz on cloud-hosted FPGAs.

CCS CONCEPTS

• Hardware → Simulation and emulation; Dynamic memory;
Reconfigurable logic applications.

KEYWORDS

emulation; FPGA prototyping; memory systems

ACM Reference Format:

David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew
Waterman, Jonathan Bachrach, Krste Asanović. 2019. FASED: FPGA-
Accelerated Simulation and Evaluation of DRAM. In The 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA ’19),
Feb. 24–26, 2019, Seaside, CA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3289602.3293894

1 INTRODUCTION

With the slowdown in process technology improvements, architects
are increasingly turning to specialization to deliver advances in
performance and energy efficiency. Modern SoCs contain a collage
of fixed-function units and specialized accelerators, with general-
purpose application processors consuming a dwindling fraction of
the die. Heterogeneous specialized systems add new complexity at
all levels of the computing stack, and research into new program-
ming models, runtimes, and operating systems is expanding.

FPGA ’19, February 24–26, 2019, Seaside, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA ’19), February
24–26, 2019, Seaside, CA, USA, https://doi.org/10.1145/3289602.3293894.

Architects and systems designers will need a comprehensive
set of simulation technologies to enable this research. Both archi-
tectural and microarchitectural full-system software simulators
will remain important sandboxes for prototyping new ideas. In
many domains, sampling techniques permit the use of slower but
more detailed microarchitectural simulators, providing greater fi-
delity without loss of simulation throughput. Unfortunately, there
are many cases in which existing software-based microarchitec-
tural simulators are too slow, and sampling techniques fail because
samples cannot be reused for changes that have large impacts on
execution behavior. A few such cases include tuning highly parallel
specialized multiprocessors; runtimes that dynamically schedule
and optimize code based on performance; and hardware-software
co-design flows, where the hardware and software change simul-
taneously. In such cases, FPGAs are the only technology that can
provide high-fidelity full-system simulation with low experimental
latency, high throughput, and low cost per simulation cycle.

FPGA-accelerated simulation has been actively studied over the
past decade, notably in the multi-university RAMP project [23], but
it has seen little adoption for a number of reasons:

(1) FPGA-accelerated simulators are difficult to write or modify,
and lengthy compilation times make them onerous to debug.

(2) FPGAs have historically been resource-constrained, limiting
the scale of the system under simulation or incurring the
great additional complexity of multi-FPGA partitioning.

(3) Purchasing and maintaining an FPGA cluster is prohibitively
expensive.

Fortunately, recent technological advances address the latter two
challenges: FPGAs have been scaling well, providing greater fmax
and capacity, and are now widely available as cloud-hosted re-
sources [1]. Alas, design complexity challenges remain.

One promising avenue is to automatically generate the FPGA-
hosted components of the simulator from RTL produced by highly
configurable generators such as the Rocket Chip RISC-V SoC gen-
erator [2]. The biggest limitation of this approach so far has been
modeling the main memory system. The DRAM controller RTL,
physical interface, and chip models cannot be simply mapped to
the FPGA, so prior work used simplistic, handwritten RTL mod-
els (e.g., latency pipes) backed by FPGA-attached DRAM [11]. In
this paper, we address the challenge of flexibly modeling DRAM
memory-systems at greater fidelity. The techniques we propose can
be applied to modeling other memory types, such as non-volatile
memories, and I/O devices where transformation from ASIC RTL
is difficult or impossible. This paper makes the following contribu-
tions:

1

https://doi.org/10.1145/3289602.3293894


First, we propose separating the concerns of host-platform map-
ping from target modeling, by writing the timing model of a split-
timing-functional model as target-time RTL. This approach makes
it considerably easier to describe detailed timing-model generators
and allows new users to add new timing models without a detailed
understanding of how the model will be mapped to the FPGA.

Second, we demonstrate the flexibility of this approach by pre-
senting fased, a last-level-cache and multi-rank DDR3 timing-
model generatorwith fidelity comparable to cycle-accurate software-
based simulators like DRAMSim2 [19]. fased instances can be
reconfigured without FPGA recompilation and are instrumented
to provide the same performance and power measurements as
software-based simulators.

2 ON FPGA-BASED SIMULATION

We first review the use of FPGAs for architecture studies. Through-
out this paper, we make a distinction between the target and the
host. The target is the design under study. Combining the target
with a model of the environment in which it executes forms a deter-
minate closed system whose behavior is defined independently of
the simulation host. The host is the hardware that executes (hosts)
the simulation. In this paper, a host consists of one or more CPUs
connected to one or more FPGAs.

2.1 FPGA Prototyping

FPGAs have long been used to prototype ASICs by implementing the
ASIC RTL directly in FPGA logic. While FPGA prototypes are both
fast (10s to 100s of MHz) and detailed, they require a complete RTL
description of the target design. Furthermore, larger designs must
be painstakingly partitioned across multiple FPGAs. Since these
multi-FPGA prototypes advance in lockstep, cycle by cycle, they are
considerably slower (100s of KHz to 1s ofMHz). Nonetheless, FPGAs
are usedwidely in industry, as they allow software development and
hardware validation to proceed months before silicon is available.

2.2 FPGA-Accelerated Simulation

Prior work has explored techniques tomake FPGAsmore usable and
powerful simulation hosts. Motivated by the dawn of the multicore
era, the multi-university RAMP project [23] made large strides
in improving FPGA-accelerated simulators by improving resource
efficiency, developing FPGA partitioning techniques, and avoiding
FPGA recompilation by using reconfigurable models.

ProtoFlex [6] was an architecture-level simulator that demon-
strated 16-way host-multithreading of a single FPGA-hosted func-
tional model. ProtoFlex could switch between FPGA-hosted and
CPU-hosted modes via transplantation. FAST [5], a cycle-accurate
simulator, was split into CPU-hosted functional and FPGA-hosted
timing models. RAMP Gold [20] used FPGA-hosted timing and func-
tional models with 64-way host-multithreading to model a larger
target on a single FPGA. HAsim [17] also used FPGA-hosted timing
and functional models, but provided more detailed pipeline and
memory hierarchy models.

Other work studied partitioning targets over multiple FPGAs.
[8] showed that by partitioning HAsim over two FPGAs, they could
model eight times as many cores, due to improved resource shar-
ing between virtual instances. To model a datacenter-scale target,

DIABLO [21] leveraged RAMP Gold’s multithreading to simulate
3072 servers on 24 FPGAs.

A unifying theme of FPGA-accelerated simulators is that one
clock-cycle of target time is executed over a variable number of
FPGA-host cycles. This lets an FPGA-hosted simulator hide vari-
able host latencies to DRAM and CPU-hosted components, enables
optimizations that trade host time for host resources, and, crucially,
facilitates deterministic simulation. This host-target decoupling is
what differentiates an FPGA-accelerated simulator from an FPGA
prototype. We expand on this property in Section 3.2.1.

2.3 Adoption Challenges

Despite their promise, FPGA-accelerated simulators have only been
successfully employed by those who designed them. We attribute
their limited appeal to several factors:

(1) Availability.Much of the early FPGA-accelerated simulator
research relied on boutique FPGA-emulation platforms or
custom board designs, whose high cost and limited availabil-
ity prevented adoption.

(2) FPGA Capacity. Common ASIC structures, such as CAMs
and multi-ported RAMs, map poorly to FPGA fabrics [24],
making it difficult to host large ASIC designs on FPGAs.

(3) Ease of Use. To avoid partitioning across multiple FPGAs,
previous work focused on efficiently mapping more of the
target to a single FPGA. The abstract, multithreaded models
these simulators typically employ can be more difficult to
implement than the machines they model, greatly under-
mining their usability. This complexity limits configurability,
forcing users to modify a sophisticated piece of RTL to make
larger changes. Furthermore, these abstract models must,
like their software counterparts, be validated and calibrated,
making them even more laborious to use.

2.4 Recent Technological Advances

Even as Moore’s law wanes, FPGA capacity continues to scale. The
largest FPGAs have over 50MiB of BRAM and millions of logic
cells. As they have scaled, FPGAs have become more heteroge-
neous, adding features that make them better hosts for full-system
simulators. Both Intel and Xilinx sell FPGAs with embedded micro-
processors, making it easier to co-simulate tightly coupled hardware
and software models. Modern FPGAs include dedicated DRAM con-
trollers that support memory bandwidths rivaling those of ASICs.

Lower cost and increased on-chip integration have also made
FPGAs more accessible to researchers. Not only are commercial
off-the-shelf development boards cheaper and more full-featured,
FPGAs are now available as a cloud service [1]. Where in the past
academics would have to purchase their own FPGAs to reproduce
published experiments, instead, it is now possible to spin up identi-
cal simulations on FPGAs in the cloud. This development promises
to foster more collaboration around FPGA-accelerated simulation.

2.5 Usability Through Automation

While the trends described in the previous section solve the avail-
ability and FPGA capacity challenges, usability remains a problem.
Previous work [7, 12] has shown that much of an FPGA-accelerated
simulator can be automatically generated from source RTL. This

2



RTL can be written in an HDL like Verilog, generated by a high-level
synthesis tool, or emitted by languages like Chisel [3] or Bluespec.

Alas, it is not always practical to generate models from source
RTL. Consider off-chip memory systems: they are too resource-
intensive to host in the FPGA fabric, yet for reasonable simula-
tion performance, they must be tightly coupled with the proces-
sor model. Components like these require an abstract model to
virtualize the target memory system over DRAM attached to the
FPGA—reintroducing the problem that anything but a simplistic
model is difficult to design, validate, modify, and reuse.

To avoid these pitfalls, we propose writing detailed memory-
system timing models as decoupled, split-timing-and-functional
models with the timing models written as target-time RTL. Using
this approach, the same RTL transformations applied automatically
to the processor RTL are applied to the timing-model RTL before
binding it to the functional model. Model designers can focus on
modeling detailed target behavior and not worry about the mapping
to the host.With our approach, since timingmodels are transformed
from target-time RTL, it is possible to use HLS-generated RTL or
even existing memory-controller RTL as a timing model.

To improve reusability, we propose writing timing models as
generators. This allows the model designer to describe a space of
instances with less development effort. To support reconfiguring
timing models without FPGA recompilation, timing models expose
timing parameters as I/Os that are bound automatically to memory-
mapped registers during timing-model generation. Taken together,
these techniques make it possible to describe detailed, reusable
memory-system models. We demonstrate this claim with fased.

3 THE SIMULATION FRAMEWORK

While fased can compose with other FPGA-accelerated simulators,
in this paper we extend FireSim [10] and MIDAS [13]. MIDAS is
a compiler that generates FPGA-accelerated simulators automati-
cally from Chisel RTL. MIDAS is not standalone; FireSim provides
a development environment, with RTL and software models for
complete target designs, as well and powerful utilities to batch out
FPGA builds and simulations across Amazon EC2.

3.1 Host-Target Decoupling

Generally, host-target decoupling begins with a target abstraction
that represents the target and its environment as a dataflow graph of
actors [16, 22]. The target abstraction we use in this paper derives
from the one used in RAMP [23] and resembles a synchronous-
dataflow graph [15] where:

• Tokens are messages passed between the nodes of the graph.
Tokens represent the values on wires in the target at the end
of a target cycle.

• Models are graph nodes that model the behavior of a syn-
chronous block of RTL. Each model executes one target cycle
of simulation by dequeuing a token from each of its inputs
and enqueuing a token into each of its outputs.

• Channels are the edges of graph. They transport tokens
between models and simulate target-interconnect latency,
buffering, and clock-domain crossings. At the start of simu-
lation, a channel is initialized with a number of tokens equal
to its latency.

A simulator that faithfully implements this graph decouples tar-
get time from host time. Unlike in an FPGA prototype, where every
FPGA clock cycle emulates a target clock cycle, an FPGA-hosted
model only executes a target-clock-cycle when it can legally fire.
Thus, the behavior of the target is decoupled from the host, al-
lowing simulators to be partitioned across the host and to tolerate
variable-host-latencies to DRAM and the CPU, while remaining
deterministic. Unfortunately, this results in target time advanc-
ing slower than it would in an FPGA prototype of the same host
frequency. This is quantified by the FPGA-cycle-to-Model-cycle
Ratio (FMR)[16], below, which increases from one (the simulator
simulates a target cycle on every FPGA host cycle) as the simulator
stalls on token availability and backpressure. The FMR of a sim-
ulator is variable: it is a function of both application-dependent
behavior in the target and variable latencies in host services.

FMR =
CyclesF PGA
CyclesTarдet

3.2 The MIDAS Compilation Flow

MIDAS-generated simulators compose three types of models in
their target graphs:

(1) Transformed RTL models generated from ASIC RTL.
(2) Abstract RTL models intended for FPGA hosts.
(3) Software models that are hosted on a CPU.
The next three sections give an overview of how MIDAS, with

the help of the user, maps a target graph composed of these models
into an FPGA-accelerated simulator.

3.2.1 ASIC-RTL-to-Model Transformation. We transform a syn-
chronous block of RTL into a model using a FIRRTL [9] transfor-
mation called a FAME-1 transform. The transformation gates state
update of the RTL with a model-global signal, targetFire, which is
driven with the AND-reduction of the valid signals of all input ports
and the ready signals of all output ports. Thus, in these models,
state update, output token enqueue, and input token dequeue occur
simultaneously in a single host-clock-cycle.

3.2.2 FPGA-Host Mapping. Once ASIC-RTL has been transformed
into models, MIDAS creates a host-agnostic mapping of the target
graph. This is also the point where MIDAS links in other models,
including fased instances.

Using Chisel, MIDAS generates simulation FIFOs that imple-
ment the channels of the target graph. When a channel spans the
boundary of the FPGA, MIDAS generates an endpoint, a FIFO with
a matching head or tail on the opposite part of the host platform.
Together, these endpoints implement the simulation channel. All
remaining I/O on transformed-RTL models are bound to a default
I/O model, which acts as an infinite source and sink of tokens.
During this process, MIDAS also generates memory-mapped mod-
ules for simulation control and instrumentation. These include a
DRAM-initialization module and a master that governs the advance
of target time on the FPGA.

Once all of the simulation components have been generated,
the simulation interconnect is elaborated and bound to a single
AXI4 slave port. All memory-mapped simulation components are
accessed through this interface. Additionally, a crossbar is gen-
erated to arbitrate between components that require FPGA-host

3



�B�!�F�	� C)(����

��� EF�D�� C�

/*�*����
 

�D�AE�BD#������

��EFD��F����

�B�FI�D�

�4
�

)��(

��#BD-��-EF�#�
� # A���B��"


���*"F�
�-�
�B��"�
���E�F 

��
�E
�F

��
�E

�F

�
B�

�"
E

	�
�A

A�
"E

�"B�!

�+ ��

�

Figure 1: The graph of target designs studied in this paper.

DRAM. Ultimately, MIDAS emits a Verilog file and a C++ header
describing the simulator’s memory map. To generate a bitstream,
the user instantiates the MIDAS-generated Verilog in a skeleton
FPGA project that exposes AXI4 interfaces to the FPGA’s off-chip
memory systems and interconnect to the host CPU.

3.2.3 Software Simulation Driver & Software Models. To control
the simulator, the user writes a C++ program that links against
the MIDAS C++ libraries and the generated header. The MIDAS
libraries implement basic commands used to control simulation.
These commands are decomposed into memory-mapped I/O issued
over the simulation interconnect. To complete the simulator, the
user links in software models into this program.

3.3 Targets & Hosts of This Paper

All target designs used in this work are tethered RISC-V processors
with a single-channel DRAM subsystem. They share the target
graph shown in Figure 1. This graph comprises a Rocket-Chip-
generated transformed-RTL model that includes one to four Rocket
pipelines with L1 caches and a cache-coherence controller; software
models for a UART (not shown), a block device, and the RISC-V
front-end server (FESVR, which provides BIOS-like functionality);
and a fased instance, which connects to an AXI4 port presented
by the processor. All remaining I/O of the transformed-RTL model,
including reset, is bound to the default I/O model.

While MIDAS supports other FPGA hosts, currently FireSim
only has support for Amazon EC2 F1 instances. F1’s f1.2xlarge
instances have a Xilinx UltraScale+ XCVU9P1 attached to four
16GiB channels of ECC-enabled DDR4 SDRAM. FPGAs are attached
to a CPU with 8 hardware threads and 112GiB of DRAM. Figure 2
shows the target mapped to an F1 host.

4 MEMORY MODEL ARCHITECTURE

fased is a generator, written in Chisel [3], that can elaborate in-
stances from a space of possible parameterizations. Instances them-
selves model a space of different memory systems: the user picks
the final target-design point by programming the instance’s config-
uration registers at runtime.

As input, fased accepts a parameterization that constrains fea-
tures of the instance, such as its interface widths, the maximum
number of outstanding requests it must support, and the type of

12.6 million logic cells, 346Mb of on-chip memory.

414R�/9 
5MRE.�#E1M�
1)�&
�


414R�293-�#I.IMU�#/! �9

/9
 �

0�
-�

�&
&�

3I
��

00
�(

29
3-

�0
�-

�
��

�

�3

I�
�0

0�
(�

U�
(�

/H
AM

ME
.4

9/5�1�/1MRP1..EP
-#5(��PIDGE���/0/

�"��1DE.
1MDO1IMR4

�EL1PV
5MIRIA.IWARI1M

�ILS.ARI1M
�A4REP

29
3-

��
EL

1P
V�

�S
4

 -
#5

(�

(

B�
���

���
���

���
���

���
���

�ILS.ARI1M�/1MRP1.��S4�
 -#5(�.IRE�
&B�

0EFAS.R�5�8�
�1DE.

9/
5�
1�

0P
IT
EP

4

-"
��

2�
��

SM
RIL

E

�
50

-�
�/

9 
�2

93
-�

�P
AM

4O
1P

R�0
PIT

EP
4

�1C-ER�/HIO

�I
L

S.
AR

I1
M�

�
AI
M

�
50

-�
�

�I
L

S.
AR

I1
M�

6I
BP

AP
IE
4

2-�10
5M4RAMCE

21�!��

reset();
step(k);

�50-��/.1C-�01LAIM� �&)��������4W�
�HE..�/.1C-�01LAIM� &)���4W�

0�
-�

�/
1M

RP
1.
.E
P4

"
ID
RH

�-
DA

OR
EP

��
�/

0/

9/5�1�/1MRP1..EP

Figure 2: The target mapped to an F1 host. The contribution

of this work is the fased instance, which replaces a crude

latency-pipe model provided by the prior work.

Timing Model

. . .

Simulation Control Bus
AXI4-lite

Valid ID

reset

RReq

Sim
ulation 

Register File

W
AR

B
R

BReq

BResp

�
��
��� �����

�

��
	�
�

�

��
�
��
��� ���

�

��
	�
�

�

Request
Gating

Host Request Scheduler
tReset

R available

RResp

t{AR, AW, W}

t{B, R}

AX
I4

 h
an

ds
ha

ke
s

iTokens 
valid

H
RQ

 re
ad

y

 fTokens 
valid

B available

outputs
ready

fire

Host Response Staging

AW

AW
AR

W

ID 2k-1
ID0

B
R

host configuration &
instrumentation

Figure 3: A block diagram of a fased instance, with all sig-

nals that may stall timing model execution illustrated.

memory system the instance will model (a timing-model class). As
output, fased generates an instance RTL module and memory map
of its host configuration registers. These registers control timing
parameters; their values can be modified at runtime to reconfigure
the instance without needing to recompile the FPGA bitstream.

4.1 Instance Organization

The block diagram of an instance is shown in Figure 3. Instances
operate by using the FPGA host’s DRAM as a backing store. Target

4



Timing Model

. . .

RReq

AR

R

HReq Scheduler

HResp Staging

AR

R
RResp

A

E
D

E

H

HostH

DataD

D

E Empty

Absent

Token Types

Other Types

(a)

Timing Model

. . .

RReq

AR

R

HReq Scheduler

HResp Staging

AR

R
RResp

Miss!

E

H

A

A A

Stalled

(b)

Timing Model

. . .

RReq

AR

R

HReq Scheduler

HResp Staging

AR

R
RResp

E

H

A

A A

Stalled

(c)

Timing Model

. . .

RReq

AR

R

HReq Scheduler

HResp Staging

AR

R
RResp

D

E

E
D

H

(d)

Figure 4: A fased instance simulating a single-target-cycle read. Data tokens carry target transactions (their target-valid bit

is set) whereas empty tokens do not carry a target transaction.

requests carried in simulation tokens are snooped by the host-
request scheduler, which issues them to the host memory system.
Responses from the host memory system are subsequently buffered
in the host-response staging modules. In parallel, the timing model, a
simulation model transformed from target-time RTL using a FAME-
1 transform, consumes input tokens and generates output tokens.
When the timing model wishes to release a valid memory-response
token, it queries the host-response staging module for the corre-
sponding host response. If the host memory system has not yet
responded, targetFire is de-asserted, preventing token flow and
ultimately stalling the simulator. We describe this mechanism in
greater detail in the next section (4.2).

The host-request scheduler and host-response staging modules,
together with the FPGA-host DRAM, constitute the functional
model of an instance. Timing models are written in target-time
RTL and have three interfaces:

(1) An AXI4 port through which the model receives memory
requests from the rest of the target.

(2) Two functional-model request ports (BREQ&RREQ) through
which the timing model fetches data for target responses
from the host-response staging module. Responses are car-
ried by the next tokens (fTokens) generated by the host-
response staging unit.

(3) A host-configuration port that carries the timing parameters
of the model and records instrumentation data.

During instance generation, fased binds the host-configuration
port to memory-mapped registers on the simulation bus. It then
FAME-1-transforms the timing model, connects it to token queues,
and binds the targetFire signal, which is asserted when all of the
following conditions hold:

(1) All input tokens are present (iTokens valid in Figure 3).
(2) All output queues are ready (outputs ready).
(3) The host-request scheduler can accept a request (HRQ ready).
(4) All host-response tokens are present (fTokens valid).

4.2 Operation

To demonstrate how fased instances operate, let us consider an
instance with a single-cycle-memory timing-model. This is depicted
in Figures 4a-4d.

Suppose we have reached the first read request issued to the
memory system (Figure 4a). Let this be host and target cycle 0.When
the timing model accepts this request, it is snooped by host-request
scheduler. Simultaneously, the timing model makes a request to
host-response staging module as it needs to reply to the read in the
next target cycle.

In host cycle 2 (Figure 4b), the host-response staging module
cannot produce the associated host response, since it has yet to
be issued, and so generates no fToken, stalling the timing model.
In parallel, the host-request scheduler issues the required read to
the host memory system. While the host-response staging module
waits, the timing model stalls. If the host memory system responds
in K cycles, at host cycle K + 1 (Figure 4c), that response is received.

In cycle K + 2 (Figure 4d), the host-response staging module
produces an output token, targetFire is asserted, and target cycle
1 executes. Here the timing model forwards the data directly into
its output token. From the target’s perspective, the read occurred
in a single cycle, however, the cycle was executed with an FMR of
K + 2. As the latency of the target increases, FMR decreases and
approaches unity. If the target memory system is strictly slower
the host memory system, the instance executes at unity FMR.

4.3 Functional Model Configuration

Our design allows both the host memory system and the timing
model to reorder responses; the host-staging unit implements a set
of virtual queues for each AXI4 channel. Each queue represents the
FIFO ordering within a single channel ID. The size of the functional
model is sensitive to the maximum number of reads and writes it
must accept, the maximum number of transactions that can be in
flight on the same ID, and the maximum request lengths. For small
degrees of ID reuse, or small numbers of outstanding requests, the
memory system model implements each virtual queue as a physical
queue, and aggregates them together in one dual-ported BRAM [8].

5



For greater numbers of AXI IDs or greater degrees of ID reuse, it
dynamically assigns entries within block RAMs, and maintains a
hardware linked list to track to read-response order in a given ID.

4.4 General-Purpose Timing-Model Classes

fased provides two simple, general-purpose timing-model-classes
that can be used to model large off-chip memory systems. The
first is a latency-bandwidth pipe (LBP) that applies independently
programmable latencies to read and write requests and will not
accept any new requests beyond a programmable limit. The second
is a bank-conflict model, which adds a penalty ofmax(0, tCP − t∆)
cycles to a base latency if the bank was used t∆ cycles prior, where
tCP is the maximum conflict penalty. These models were validated
in trace-driven RTL simulation against software golden models
which match their cycle-by-cycle behavior exactly. We give the
FPGA resource utilization for a handful of instances in Table 12.

Example Instance Logic LUTs FFs BRAM fMAX
8 read, 8 write 1337 972 3 281
32 read, 32 write 2119 1500 1 264

Above w/ no ID reuse 1289 873 1 317
Table 1: Resource counts and best-case fMAX (MHz) for three

different LBP models (maximum AXI4 burst length of 8

beats). Supporting more concurrent transactions (row 2) re-

quires a larger functional model; this can be mitigated by

giving the generator hints (row 3).

4.5 Composable Last-Level-Cache Model

All timing model classes can be generated with a single-banked,
write-back, last level cache (LLC) model with a random replacement
policy. Since we can reuse the same functional model, the model
only instantiates tag and metadata arrays, letting us model an LLC
that would be too large to fit on the FPGA. fased LLC models have
a runtime-configurable number of sets and MSHRs, associativity,
and line size. Refills from the backing memory model are prioritized
over reads over writes. Reads or writes made to a set with a pending
writeback or refill are interlocked. We make the cache composable
with all other timing-models by implementing an additional internal
AXI4 bus (stripped of its data fields). We give the FPGA resource
utilization for a handful of LBP-backed LLC instances in Table 2.

Example Instance Logic LUTs FFs BRAM fMAX
4 MiB, 16 ways 2166 1240 27 222
4 MiB, 8 ways 2265 1272 39 220

4 MiB, direct mapped 1848 1241 34 242
64 MiB, 8 ways 2545 1426 251 152

Table 2: Resource counts and best-case fMAX (MHz) for four

different LBP-backed LLC models, labeled with the largest

capacity and associativity they canmodel (128B cache lines).

We validated the LLC model in RTL simulation backed with
a latency bandwidth pipe. We generated trace-based microbench-
marks and measured cache behavior for a set of generated instances
programmed with runtime settings.

2We used Vivado 2017.1, targeting the XCVU9P-FLGB2104-2-i device present on F1
instances. We registered all I/O, and overconstrained the design to 400MHz to obtain
a best-case fMAX . We exclude memory LUTs (lightly used) and DSP48s (unused).

5 ON DRAMMEMORY SYSTEMS

Before describing fased’s DRAM timing-models (Section 6), we
review some relevant background on DRAM memory systems.

5.1 DRAM Device Architecture

In a DRAM IC, arrays of bit cells are hierarchically arranged into
multiple parallel banks. Banks provide the primitive level of concur-
rency in a DRAM memory system: they can service independent
requests assuming they do not simultaneously require shared re-
sources like the data, address and command buses. Multiple DRAM
ICs can be arranged in parallel to widen the data bus; address and
command buses fan out to each IC.

A basic DRAM operation requires a series of three commands:
activate (ACT), column access (CAS), and precharge (PRE). The ACT
command enables the word-lines of the array corresponding to a
single row of the bank. The cells of the row are sensed and saved in
a row buffer. A CAS command then selects a subset of the row buffer
to read or write; data is bursted over successive clock edges. While
the row buffer remains open, the row can be accessed by issuing
new CAS commands. To access a different row, a PRE command
must be issued to close the row and recharge the bit-lines.

DRAM gradually loses its stored state over time as bit cell ca-
pacitors leak. To maintain their state, DRAM cells must be peri-
odically refreshed. In the DDR standards, JEDEC mandates that
cells must be refreshed once every 64 ms. Since activations to every
row cannot generally be guaranteed during normal use, DRAM
devices are refreshed explicitly with a refresh command (REF). To
reduce complexity, this command refreshes a constant number of
contiguous rows in all banks concurrently. DRAM manufacturers
generally have kept the number of refresh commands required to
iterate through the entire array constant: 8192 commands per 64
ms interval, or one every 7.8 µs .

5.2 DRAM Controller Architecture

A DRAM controller is responsible for responding to memory re-
quests from one or more requesters by scheduling those requests
over its memories as a judicious stream of DRAM commands.

Memory access scheduling (MAS) is the process by which, for
a given cycle, a controller selects a single DRAM command to be
issued from a legal set. Legal commands are constrained by the
current state of each bank, the availability of shared resources like
the command and data buses, and timing constraints imposed by
the DRAM devices. Good MAS policies strike a balance between
minimizing latency, maximizing bandwidth, minimizing power,
and maintaining quality-of-service guarantees. In this paper we
consider two commonMAS policies: First-Come First-Served (FCFS)
and First-Ready FCFS (FR-FCFS) [18].

In a FCFS MAS, commands for the oldest pending memory refer-
ence are issued first. This is the simplest MAS policy, but tends to
under-utilize available DRAM bandwidth as younger requests that
may hit an open row buffer must wait behind commands that miss.
In a FR-FCFS MAS, first, ready (legally issuable) column commands
are prioritized over ready row commands. Second, commands for
older references are prioritized over younger ones. This permits
younger but ready column commands to be issued before older row
commands, improving DRAM bandwidth utilization considerably.

6



5.3 DRAMMemory System Simulators

The current state of the art in DRAM simulation in academia is
cycle-accurate software simulators like [4, 14, 19]. These simula-
tors generate DRAM command streams that have been validated
against industrial models. In trace-driven mode, operating at full
throughput and only as a timing-model, these models simulate at
rates of hundreds of KHz to ones of MHz (reported in [14]).

6 DRAM TIMING MODELS

We provide two DDR3 timing-model classes based around FCFS and
FR-FCFS MAS. DDR3 timing models have a runtime-configurable
address assignment, speed grade, page policy, and rank, bank, and
row count. The timingmodels generate legal DDR3 command traces
that have been validated against Verilog golden models.

6.1 Timing Model Design

Both timing-model classes consist of four components: transaction
scheduler, DRAM state trackers, MAS, and backend.

6.1.1 Transaction Scheduler. The transaction scheduler consists of
a single, unified, configurable-depth queue that can accept an AXI4
read and write transaction simultaneously. Reads are given priority
when only one slot is available. Transactions are passed to the MAS
as they can be accepted at a rate of one transaction per cycle.

6.1.2 DRAM State Trackers. We decoupled the MAS model design
from structures that track the state of DRAM devices. The DRAM
state tracker is arranged hierarchically into rank and bank state
trackers. State trackers present to the MAS a bit vector indicating
which commands they may legally accept. Trackers have a counter
for each command type, which indicate the next earliest cycle that
the tracker can legally accept a command of that type. When the
MAS issues a command, it informs the associated state tracker,
which updates its counters accordingly.

6.1.3 Memory Access Scheduler. Each MAS maintains a data struc-
ture of memory references it is scheduling across. When a new
transaction is received, a record in this structure is populated with
the decoded rank, bank, and row addresses, alongwithMAS-specific
metadata to ease scheduling decisions. On every target cycle, the
MAS selects a legal command based on the available references
and the bit vectors presented by the state trackers. The MAS re-
leases reads to the backend on the cycle the first beat would return
from DRAM. Writes are released the cycle after a CASW command
is issued. Both MAS models have a simple, runtime-configurable
page policy. The open-page policy keeps pages open until the next
refresh or another row is to be opened. The closed-page policy al-
ways issues auto-precharged CAS commands. To maintain a global
age-order of memory references, the FR-FCFS MAS uses a single
collapsing buffer with a runtime-programmable depth.

6.1.4 Refresh Policy. Both MAS use an interrupting, all-ranks re-
fresh scheme that makes no attempt to pull-in or delay refresh
commands. When a refresh is requested, the MAS precharges all
banks in all ranks, and issues REF commands as soon as possible.

6.1.5 Backend. The backend receives read and write references
from the MAS and drives the AXI4 response channels back to the

target. If no LLC is being used, read response data is fetched from
the host-response staging unit. The backend can apply an additional
runtime-configurable latency to simulate additional latency on read
responses and write acknowledgments.

We give the FPGA resource utilization for a handful of represen-
tative DDR3 instances in Table 3.

Example Instance LUTs FFs BRAM fMAX
FCFS Single Rank (SR) 2272 1647 1 272
FCFS Quad Rank (QR) 4433 3263 1 219
FR-FCFS, SR, 8 Deep 3172 2188 5 239
FR-FCFS, QR, 16 Deep 8206 4805 1 158

Table 3: Resource counts and best-case fMAX for four differ-

ent DDR3models. The last instance can schedule over 16 ref-

erences and thus has a larger functional model.

6.2 Validation

Since our DRAM-timing models generate DRAM-command traces,
we validated traces collected in RTL simulation against a Micron
DDR3 golden model. The golden model simulates a single-device
slice of the memory organization and detects DRAM timing viola-
tions in the command trace. We made small modifications to the
provided test bench to support validation of multi-rank organiza-
tions and to accept our trace format. This is the same validation
approach used by all popular software cycle-accurate simulators. To
perform performance validation, we generated memory-reference
traces for which we could estimate bandwidth and row buffer hit
rates a priori. The traces were tailored to expose different memory-
access scheduling behavior in the MAS models.

6.3 Selecting Legal Runtime Configurations

Our most sophisticated DDR3 timing-model instances expose over
thirty runtime-programmable settings that specify the low-level
DRAM timings, address-assignment scheme, LLC-model configu-
ration, and MAS-structure sizes. Each of these settings has a legal
range of values that depends on hardware in the generated instance.
To make it easier to program instances, we provide a runtime-
configuration utility that assigns these settings from higher-level
free parameters. Users specify the DRAM data-bus width, device
DQ width, number of ranks, and total DRAM capacity. Our utility
then searches for a DDR3 device in a database and chooses one with
an appropriate density and speed grade for that memory system.

6.4 Comparison to DRAMSim2

fased models nearly all of the same aspects of DRAM as DRAM-
Sim2, but it is lacking support for burst chopping and for power-
down and self-refresh modes. We plan to add these features in the
future. fased does not natively model multi-channel memory sys-
tems, as this can be easily accomplished by using multiple instances.
Similarly, fased does not natively simulate a clock-domain crossing
between the controller and the rest of the processor, instead, this
is modeled in the MIDAS-generated channels. fased makes up for
these limitations with simulation speed: as part of a full-system
simulator fased executes 100x - 1000x faster than popular cycle-
accurate simulators running standalone (measured in [14])! We
expand on fased’s performance in Section 8.

7



Logic LUTs Registers 36K BRAM
Target Design Simulator Memory Model Simulator Memory Model Simulator Memory Model

SC-FCFS 48 664 5.3% 4680 0.5% 24 608 1.3% 3071 0.2% 30 1.8% 4 0.2%
SC-FRCFS 50 638 5.5% 6095 0.7% 25 019 1.4% 3565 0.2% 30 1.8% 4 0.2%

SC-LLC-FCFS 49 969 5.5% 6158 0.7% 24 989 1.4% 3536 0.2% 70 4.2% 44 2.6%
QC-FRCFS 128 714 14.1% 6014 0.7% 62 480 3.4% 3565 0.2% 100 6.0% 4 0.2%

QC-LLC-FRFCFS 130 329 14.3% 7747 0.8% 62 870 3.4% 3957 0.2% 140 8.3% 44 2.6%
Table 4: XCVU9P resource utilization for a space of different targets. Percentages indicate the share of total FPGA resources

consumed by that design partition. Simulator totals are inclusive of the memory model.

Benchmarks Insns (T) D$ MPKI I$ MPKI

perlbench 2.98 2.99 9.0 8.9 10.0 10.1
gcc 2.43 1.35 36.6 29.5 9.7 11.1
mcf 1.60 0.91 97.9 80.9 0.1 0.1

omnetpp 1.11 1.11 56.9 56.6 9.3 10.4
xalancbmk 1.21 1.21 62.9 62.9 7.9 7.6

x264 4.55 4.55 3.0 3.0 2.9 3.0
deepsjeng 2.51 2.14 8.7 8.2 15.4 15.3

leela 2.59 2.59 5.8 5.8 1.5 1.5
exchange2 3.24 3.24 0.0 0.0 0.1 0.1

xz 9.41 2.25 19.8 15.7 0.2 0.1
Table 5: Dynamic instruction counts and L1 MPKIs of

SPEC2017int rate and speed (single threaded), respectively.

7 EXPERIMENTAL SETUP

In Section 3, we described how MIDAS takes a target and maps
it to a host. Here, we describe the microarchitecture of the target
machines we simulate, give an overview of the SPEC2017 Integer
benchmarks that we run in our evaluation, and explain how we
instrument our target designs.

7.1 Target Designs

Our target designs are derived from the Rocket Chip generator [2],
which contains Rocket, a single-issue in-order scalar core imple-
menting the RISC-V ISA (RV64IMAFDC). Rocket Chip has been
taped out over a dozen times for both research and commercial
purposes. In our experiments, we use the default configuration of
Rocket Chip, which includes a 16 KiB L1 I$, a blocking 16 KiB L1
D$, and 32-entry fully-associative L1 I and D TLBs. We only change
the default configuration to increase the number of performance
counters and deepen the L2 TLB to 1024 entries.

At the system level, our targets consist of single or quad-core
instances of Rocket Chip (labeled SC or QC), composed with either
a latency-bandwidth pipe or a quadruple-rank DDR3-2133 (14-14-
14) FCFS or FR-FCFS DRAM models over a 64-bit AXI4 bus. In
all targets, the simulated system has 16 GiB of DRAM capacity.
Additionally, two targets include a 4 MiB LLC model (labeled LLC).
In the target’s periphery, we have a UART and block device that
interact with simulation models co-hosted in software.

We report the utilization of several host-mapped targets in Ta-
ble 4. We separate the utilization contributions into “Simulator” (the
component of the design generated by MIDAS, including the fased
instance), and Memory Model (only the fased instance). Not shown
is the contribution of the F1 shell, which consumes a constant 14.5%,
10%, and 16.7% of the XCVU9P’s Logic LUT, Register, and 36K BRAM
resources respectively.

7.2 System Software

All benchmarks were run on Linux kernel version 4.15.0-rc6. We
built base Linux distributions with Buildroot and BusyBox. As part
of our FPGA batch-job submission scripts, these base images are
modified to add the desired workload and to run the workload
immediately after Linux boot by altering the init script. During
simulation, target processes pipe standard out to the target filesys-
tem. We retrieve these files by remounting the filesystem on the
host-CPU after the simulation has completed.

7.3 Instrumentation

To measure core-side performance counters, we run a target pro-
gram that, on a one-target-second timer interrupt (1 billion cycles),
reads a core’s performance counters and dumps them to the target
filesystem. We pin an instance of this program to each core. To mea-
sure DRAM-side statistics, we pause the simulator every one-billion
target cycles and read out the memory-mapped instrumentation
registers. Unlike using a target program to obtain these values, this
approach does not alter the target’s behavior.

7.4 An Overview SPEC2017int On Rocket

In our experiments, we run SPEC2017 intrate and intspeed suites
with reference inputs, cross-compiled for RISC-V systems with the
-O2 flag. Intspeed benchmarks require as much as 16GB of memory,
while intrate benchmarks require 2GB per copy. In Table 5, we
give each suite’s dynamic instruction count and L1 MPKIs when
running on the Rocket configuration of Section 7.1

8 DEMONSTRATING FASED

In this section we demonstrate fased in a series of small experi-
ments and study its performance characteristics.

8.1 Working Set Study

Caches help insulate processors against long and variable latencies
to DRAM. Unfortunately, large LLCs are difficult to implement di-
rectly on FPGAs due to area limitations. fased enables the architect
to explore cache sizes that would otherwise be impossible to host on
a single FPGA. We explore this by sweeping LLC-cache sizes from
64KiB to 1MiB in size. In Figure 6 we show the speed up provided
by different cache sizes and contrast them against a cache-less and
single-cycle memory-system.

8.2 Effects of DRAM Limitations

In this experiment, we quantify the extent to which specific timing
details affect target execution time. We start with the validated
model, Full, and gradually strip out features: No Refresh disables

8



mcf

om
ne

tpp

xa
lan

cb
mk

gc
c

de
ep

sje
ng

pe
rlb

en
ch

x2
64

ex
ch

an
ge

2

Geo
Mea

n

intspeed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Single Cycle 
LLC No Refresh 
LLC Full Model 
No Refresh Full 
Model

lee
laxz mcf

om
ne

tpp

xa
lan

cb
mk gc

c xz

pe
rlb

en
ch

x2
64

ex
ch

an
ge

2

Geo
Mea

n

intrate

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Single Cycle 
LLC No Refresh 
LLC Full Model 
No Refresh Full 
Model

lee
la

de
ep

sje
ng

Figure 5: Target-execution time of SPEC2017 intspeed and intrate (4 copies) with reference inputs for DRAMmodels with and

without refresh enabled. Runtime is normalized to that of a single-cycle memory system. LLCs, if present, are 256KiB and

1MiB large for intspeed and intrate respectively and are 8-way set associative.

mcf

om
ne

tpp

xa
lan

cb
mk gc

c xz

pe
rlb

en
ch

x2
64

ex
ch

an
ge

2

Geo
mea

n

intspeed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Sp
ee

du
p

No Cache 
64 KiB 256 
KiB
1 MiB Single 
Cycle

de
ep

sje
ng lee

la

Figure 6: Speedup in SPEC2017 intspeed (reference inputs)

vs LLC model size. All caches are 8-way set associative.

refresh, No ACT Limits sets tFAW and tRRD to zero, and finally,
Ideal removes all other timing considerations3.

The slowdowns of these models relative to a single-cycle mem-
ory system are shown in Figure 5. Without an LLC, the largest
source of slowdown is refresh, which contributes a 1.01× and 1.11×
slowdown for intspeed and intrate, respectively. Eliminating tRRD
and tFAW had almost no effect; we suspect reducing rank count and
increasing device density would induce a perceptible slowdown. Re-
maining DRAM non-idealities contribute a 1.02× slowdown. Once a
cache is included, these slowdowns are effectively mitigated: refresh
contributes a only 1.01× slowdown in intrate.

8.3 Simulation Performance

Table 6 gives the host-execution times and execution speeds for a
handful of SPEC2017 runs. The targets with DDR3 models consis-
tently run at rates above 100MHz. Theoretically, fased instances
can operate at the host frequency (160 MHz) if the functional model
can always serve timing model requests in time. On our host, reads
and writes take on average 47 and 37 cycles, respectively, when
unloaded. These latencies have a significant effect on simulator
performance when modeling a single-cycle memory system as that
host latency is fully exposed to the simulator, but they have rela-
tively little impact when modeling a realistic DRAM system whose
latency (cycles) is similar to that of the host. Instances with LLCs
fall between these extremes: LLC hits are fast in target time and
thus expose the host-DRAM latency to simulator, while misses
present sufficient target-latency to hide the host-DRAM access. For
our DDR3-2133 target memory system, reads take 20, 34, and 48

3tRT P , tWTR , tRTRS , tRT P =0; tRAS = tRCD + tCS tRC = tCS + tRCD + tRP .

cycles for row hits, closed row, and row misses, respectively. These
latencies are large enough that many accesses can be served by the
functional model before the timing model requires them, eliding
simulator stalls. Ironically, modeling a slower DDR-speed-grade
slows down the simulator: since tCS is smaller, reads complete in
fewer target cycles despite taking more target time.

8.4 Instrumentability

fased allows the user to instrument timing models without chang-
ing target behavior. Coupled with fast simulation speeds, this allows
a fased instance to provide insight into system-wide behavior that
would be difficult to collect otherwise. We demonstrate this in Fig-
ure 7, where we see how row-buffer and LLC hit rates are inversely
correlated through each of 641.leela’s games of Go.

9 CONCLUSION

FPGAs in the cloud provide a compelling platform to build fast,
detailed full-system simulators. However, if FPGA-accelerated sim-
ulation is to see wider adoption, the usability limitations of prior
workmust be addressed. One promising avenue lies in automatically
deriving cycle-exact, bit-exact FPGA models from synthesizable
target RTL modules. This reduces model-building and validation
effort while enabling researchers to also observe cycle-time, area,
and power impacts using commercial ECAD tools.

fased addresses a longstanding hole in these RTL-transforming
approaches by providing models of outer cache hierarchies and
DRAM memory systems—components of the target design that
cannot be naively transformed from ASIC RTL. However, by ap-
plying the same transformation on a target-time timing-model,
fased obviates many of the pitfalls of handwriting FPGA-hosted
models, as it separates the concerns target-behavior modeling and
host-platform mapping. As a result, fased instances are both fast—
capable of running at the host frequency—and detailed—comparable
to cycle-accurate software simulators of DRAM—while being far
less onerous to implement.

ACKNOWLEDGMENTS

Research partially funded by DARPA Award Number HR0011-12-2-
0016, RISE Lab sponsor Amazon Web Services, ADEPT/ASPIRE Lab
industrial sponsors and affiliates Intel, Google, Huawei, NVIDIA,
Siemens, and SK Hynix. Any opinions, findings, conclusions, or
recommendations in this paper are solely those of the authors and
do not necessarily reflect the position or the policy of the sponsors.

9



perlbench gcc mcf omnetpp xalancbmk x264 deepsjeng leela exchange2 xz
Model Type hr f hr f hr f hr f hr f hr f hr f hr f hr f hr f

Sp
ee
d Single Cycle 14.4 95 20.4 73 24.7 62 13.8 67 14.0 68 12.9 123 13.4 87 8.6 119 6.9 153 50.5 90

FCFS-256KB 14.7 100 20.8 91 25.6 102 14.1 86 14.5 88 13.1 125 13.6 91 8.6 121 6.9 153 51.8 105
FCFS 14.7 126 20.9 113 25.7 112 14.3 119 14.7 118 13.2 137 13.6 117 8.7 135 7.0 152 52.1 110

Ra
te Single Cycle 31.6 50 28.5 38 33.3 36 37.1 35 36.6 37 20.8 79 25.8 44 14.9 73 7.0 151 22.6 51

FRFCFS-1MB 31.2 54 24.4 57 23.9 72 32.5 49 31.4 54 20.4 84 24.8 48 14.3 78 7.1 150 20.7 62
FRFCFS 21.6 111 19.6 98 20.2 104 27.3 96 22.8 110 15.9 125 15.4 110 11.4 120 7.0 152 16.4 107

Table 6: Simulation times (hours) and rates (f , MHz) for SPEC2017 intspeed and intrate (four copies) running on single and

quad-core Rocket Chip targets. In all cases, the FPGA-host frequency is 160 MHz.

1.4

1.6

CP
I

85

90

95

LL
C 

H
it 

%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cycles (Trillions)

5

10

D
$ 

M
PK

I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cycles (Trillions)

25

50

Ro
w

 B
uf

fe
r 

H
it 

%
Figure 7: CPI, D$ MPKI, and row buffer and LLC hit rates running 641.leela_s with on Rocket with 256KiB of LLC and a FCFS

MAS model. These plots use a rolling average of 10 samples spaced a billion cycles apart.

.
REFERENCES

[1] Amazon. 2016. Amazon EC2 F1 Instances (Preview). https://aws.amazon.com/
ec2/instance-types/f1/.

[2] Krste Asanović et al. 2016. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17. EECS Department, University of California, Berkeley.

[3] Jonathan Bachrach et al. 2012. Chisel: Constructing Hardware in a Scala Embed-
ded Language. In Proceedings of the 49th Annual Design Automation Conference
(DAC ’12). ACM, New York, NY, USA, 1216–1225. https://doi.org/10.1145/2228360.
2228584

[4] Niladrish Chatterjee et al. 2012. USIMM: the Utah SImulated Memory Module A
Simulation Infrastructure for the JWAC Memory Scheduling Championship.

[5] Derek Chiou et al. 2007. FPGA-Accelerated Simulation Technologies (FAST):
Fast, Full-System, Cycle-Accurate Simulators. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 40). IEEE Com-
puter Society, Washington, DC, USA, 249–261. https://doi.org/10.1109/MICRO.
2007.36

[6] Eric S. Chung et al. 2008. A Complexity-effective Architecture for Accelerating
Full-system Multiprocessor Simulations Using FPGAs. In Proceedings of the 16th
International ACM/SIGDA Symposium on Field Programmable Gate Arrays (FPGA
’08). ACM, New York, NY, USA, 77–86. https://doi.org/10.1145/1344671.1344684

[7] Brandon H. Dwiel et al. 2012. FPGA Modeling of Diverse Superscalar Processors.
In Proceedings of the 2012 IEEE International Symposium on Performance Analysis
of Systems & Software (ISPASS ’12). IEEE Computer Society, Washington, DC,
USA, 188–199. https://doi.org/10.1109/ISPASS.2012.6189225

[8] Kermin Elliott Fleming et al. 2012. Leveraging Latency-insensitivity to Ease
Multiple FPGADesign. In Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA ’12). ACM, New York, NY, USA, 175–
184. https://doi.org/10.1145/2145694.2145725

[9] Adam Izraelevitz et al. 2017. Reusability is FIRRTL Ground: Hardware Construc-
tion Languages, Compiler Frameworks, and Transformations. In Proceedings of
the 36th International Conference on Computer-Aided Design (ICCAD ’17). IEEE
Press, Piscataway, NJ, USA, 209–216.

[10] Sagar Karandikar et al. 2018. Firesim: FPGA-accelerated Cycle-exact Scale-out
System Simulation in the Public Cloud. In Proceedings of the 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’18). IEEE Press, Piscataway,
NJ, USA, 29–42. https://doi.org/10.1109/ISCA.2018.00014

[11] Asif I. Khan. 2008. Emulation of Microprocessor Memory Systems Using the RAMP
Design Framework. Master’s thesis. Massachusetts Institute of Technology.

[12] Donggyu Kim et al. 2016. Strober: Fast and Accurate Sample-based Energy
Simulation for Arbitrary RTL. In Proceedings of the 43rd International Symposium
on Computer Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 128–139.

https://doi.org/10.1109/ISCA.2016.21
[13] Donggyu Kim et al. 2017. Evaluation of RISC-V RTL with FPGA-Acclerated

Simulation. In CARRV ’17.
[14] Yoongyu Kim et al. 2016. Ramulator: A Fast and Extensible DRAM Simulator.

IEEE Computer Architecture Letters 15, 1 (Jan 2016), 45–49. https://doi.org/10.
1109/LCA.2015.2414456

[15] E. A. Lee et al. 1987. Synchronous data flow. Proc. IEEE 75, 9 (Sept 1987), 1235–1245.
https://doi.org/10.1109/PROC.1987.13876

[16] Michael Pellauer et al. 2009. A-Port Networks: Preserving the Timed Behavior
of Synchronous Systems for Modeling on FPGAs. ACM Trans. Reconfigurable
Technol. Syst. 2, 3, Article 16 (Sept. 2009), 26 pages. https://doi.org/10.1145/
1575774.1575775

[17] Michael Pellauer et al. 2011. HAsim: FPGA-based High-detail Multicore Sim-
ulation Using Time-division Multiplexing. In Proceedings of the 2011 IEEE 17th
International Symposium on High Performance Computer Architecture (HPCA ’11).
IEEE Computer Society, Washington, DC, USA, 406–417. http://dl.acm.org/
citation.cfm?id=2014698.2014876

[18] Scott Rixner et al. 2000. Memory Access Scheduling. In Proceedings of the 27th
Annual International Symposium on Computer Architecture (ISCA ’00). ACM, New
York, NY, USA, 128–138. https://doi.org/10.1145/339647.339668

[19] Paul Rosenfeld et al. 2011. DRAMSim2: A Cycle Accurate Memory System
Simulator. IEEE Computer Architecture Letters 10, 1 (Jan 2011), 16–19. https:
//doi.org/10.1109/L-CA.2011.4

[20] Zhangxi Tan et al. 2010. RAMP Gold: An FPGA-based Architecture Simulator for
Multiprocessors. In Proceedings of the 47th Design Automation Conference (DAC
’10). ACM, New York, NY, USA, 463–468. https://doi.org/10.1145/1837274.1837390

[21] Zhangxi Tan et al. 2015. DIABLO: A Warehouse-Scale Computer Network
Simulator Using FPGAs. In ASPLOS ’15. ACM, New York, NY, USA, 207–221.
https://doi.org/10.1145/2694344.2694362

[22] Muralidaran Vijayaraghavan et al. 2009. Bounded Dataflow Networks and
Latency-insensitive Circuits. In Proceedings of the 7th IEEE/ACM International
Conference on Formal Methods and Models for Codesign (MEMOCODE’09). IEEE
Press, Piscataway, NJ, USA, 171–180. http://dl.acm.org/citation.cfm?id=1715759.
1715781

[23] JohnWawrzynek et al. 2007. RAMP: Research Accelerator for Multiple Processors.
IEEE Micro 27, 2 (2007), 46–57.

[24] Henry Wong et al. 2014. Quantifying the Gap Between FPGA and Custom
CMOS to Aid Microarchitectural Design. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 22, 10 (Oct 2014), 2067–2080. https://doi.org/10.1109/
TVLSI.2013.2284281

10

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/MICRO.2007.36
https://doi.org/10.1109/MICRO.2007.36
https://doi.org/10.1145/1344671.1344684
https://doi.org/10.1109/ISPASS.2012.6189225
https://doi.org/10.1145/2145694.2145725
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2016.21
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1145/1575774.1575775
https://doi.org/10.1145/1575774.1575775
http://dl.acm.org/citation.cfm?id=2014698.2014876
http://dl.acm.org/citation.cfm?id=2014698.2014876
https://doi.org/10.1145/339647.339668
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1145/1837274.1837390
https://doi.org/10.1145/2694344.2694362
http://dl.acm.org/citation.cfm?id=1715759.1715781
http://dl.acm.org/citation.cfm?id=1715759.1715781
https://doi.org/10.1109/TVLSI.2013.2284281
https://doi.org/10.1109/TVLSI.2013.2284281

	Abstract
	1 Introduction
	2 On FPGA-based Simulation
	2.1 FPGA Prototyping
	2.2 FPGA-Accelerated Simulation
	2.3 Adoption Challenges
	2.4 Recent Technological Advances
	2.5 Usability Through Automation

	3 The Simulation Framework
	3.1 Host-Target Decoupling
	3.2 The MIDAS Compilation Flow
	3.3 Targets & Hosts of This Paper

	4 Memory Model Architecture
	4.1 Instance Organization
	4.2 Operation
	4.3 Functional Model Configuration
	4.4 General-Purpose Timing-Model Classes
	4.5 Composable Last-Level-Cache Model

	5 On DRAM Memory Systems
	5.1 DRAM Device Architecture
	5.2 DRAM Controller Architecture
	5.3 DRAM Memory System Simulators

	6 DRAM Timing Models
	6.1 Timing Model Design
	6.2 Validation
	6.3 Selecting Legal Runtime Configurations
	6.4 Comparison to DRAMSim2

	7 Experimental Setup
	7.1 Target Designs
	7.2 System Software
	7.3 Instrumentation
	7.4 An Overview SPEC2017int On Rocket

	8 Demonstrating fased
	8.1 Working Set Study
	8.2 Effects of DRAM Limitations
	8.3 Simulation Performance
	8.4 Instrumentability

	9 Conclusion
	Acknowledgments
	References

