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Two major challenges of FPGA simulation
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● Labor-intensive
● Chip might not fit

FireSim

Karandikar et al., “FireSim: FPGA-Accelerated Cycle-Exact 
Scale-Out System Simulation in the Public Cloud,” ISCA ‘18.



FireSim: The easy button for FPGA simulation
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Target Architecture

Target Microarchitecture

Simulator Microarchitecture

FPGA Implementation

Host FPGA Platform

Target Workloads

Golden Gate Compiler Flexible SoC generators
User accelerator designs
Architectural experiments

“Batteries included” for the full stack!
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Why the chip won’t fit
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● Common ASIC structures map poorly

○ Highly-ported RAMs

○ Content-addressable memories

○ Multiplexers

● Abundant memory resources are underutilized

○ Logic is relatively more expensive
Making the chip fit often means buying bigger FPGA!
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How do we make the chip fit?
Golden Gate: an optimizing 

compiler for simulators



Golden Gate: a hardware compiler framework 
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● Operating on concrete RTL target designs

● Producing cycle- and bit-exact FPGA simulators

● …structured as a network of communicating actors

● …relying on decoupling to ease per-cycle synchronization

● With a reusable API for FPGA-centric resource optimizations

With a basic optimization, we fit 50% more out-of-order cores per FPGA!
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Partitioning to solve capacity “cliffs”
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• Split design across multiple FPGAs

• Each FPGA is still under-utilized!

• Well put in HAsim†: “in order to maximize 
capacity of the multi-FPGA scenario we must 
first maximize utilization of an individual FPGA.”

† Pellauer et al., “HAsim: FPGA-Based High-Detail Multicore 
Simulation Using Time-Division Multiplexing” in HPCA 2011.



Decoupling
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● FPGA prototype: one host FPGA clock = one simulated cycle

● Decoupled simulator: target and host time advance independently

○ Each target cycle may take multiple FPGA host cycles to simulate

● Software RTL simulators take this idea to the extreme



Clock gating: the simplest form of decoupling

12

input
output

clk
valid



You can save resources with decoupling
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Efficient
1-Read, 1-Write 

RAM

Resource-hogging
4-Read, 4-Write 

RAM

With 4 host cycles to simulate 1 target cycle ➨ trade space for time!



Tradeoff: it now takes 4 host cycles to simulate 
one target cycle, but we save FPGA resources
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Decoupling enables optimizations that 
can significantly reduce utilization
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No tools to apply them automatically



Where prior work falls short
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Target Architecture

Target Microarchitecture

Simulator Microarchitecture

FPGA Implementation

Host FPGA Platform

Target Workloads ● Paper idea: conceptual improvement in simulator 

architecture and/or microarchitecture arch

● Paper artifact: “artisanal” simulator based on idea

● Different goals: why write a compiler for RTL if 

most users don’t have working RTL to start with?

PhD student cleverness

Conceptual simulation stack
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A compiler framework for FPGA simulators
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Target RTL
Optimized, 
decoupled 
simulator

Guarding state updates
Transforming costly RAMs
Multi-threading host logic

These compiler passes are not RTL-preserving

• The generated simulator no longer implements the target’s RTL semantics

• But it must simulate them in a cycle-exact manner!

Golden Gate Compiler



Building blocks for Golden Gate
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Strong model of simulator behavior

Infrastructure for hardware compiler development

Interface

Implementation

Latency-Insensitive Bounded Dataflow Networks [1]

FIRRTL: Flexible Intermediate Representation for RTL [2]

[1] Vijayaraghavan et al., “Bounded Dataflow Networks and Latency-Insensitive Circuits,” MEMOCODE ‘09.
[2] Izraelevitz et al., “Reusability is FIRRTL Ground: Hardware Construction Languages, Compiler 
Frameworks, and Transformations,” ICCAD ’17.



Golden Gate models simulator as a dataflow network

20Dividing target into multiple models enables composable optimizations!

Optimized 
Mapping

Un-optimized 
Mapping

Simulation 
Collateral



Latency-Insensitive Bounded Dataflow Networks*
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● General design technique to avoid 
synchronous design constraints

● Replace synchronously timed 
signals with decoupled channels

BDNs: Bounded Dataflow Networks

Latency-Insensitive BDNs (LI-BDNs)
● Conform to a set of properties on both token values and the conditions 

under which tokens must be produced/accepted

● As a simulator: properties prescribe the behavior of tokens modeling 
inputs and outputs of components that are simulated.

* Vijayaraghavan et al., “Bounded Dataflow Networks and Latency-Insensitive Circuits,” MEMOCODE ‘09.



Compiler pass: RTL block to unoptimized LI-BDN
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● Model the value of a given I/O on a particular cycle with a token

● Replace I/O with token queues

● Analyze netlist to find combinational I/O dependencies

● Transform RTL to a set of guarded atomic actions

○ Update target state when per-cycle synchronization is complete

○ I/O tokens are processed according to LI-BDN properties



LI-BDN structure guarantees freedom from deadlock and 
defines equivalence of two simulator components!
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Helpful framework for inserting resource-
optimized simulator components!



Building blocks for Golden Gate
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Interface

Implementation

Latency-Insensitive Bounded Dataflow Networks [1]

FIRRTL: Flexible Intermediate Representation for RTL [2]

[1] Vijayaraghavan et al., “Bounded Dataflow Networks and Latency-Insensitive Circuits,” MEMOCODE ‘09.
[2] Izraelevitz et al., “Reusability is FIRRTL Ground: Hardware Construction Languages, Compiler 
Frameworks, and Transformations,” ICCAD ’17.



FIRRTL hardware compiler framework (ICCAD ‘17)

● Extensive suite of tools for writing hardware compiler passes

● Aimed at helping separate RTL from low-level implementation details

Makes writing CAD tools for chip design accessible to a wide audience!
25
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Golden Gate is structured as an extensible compiler

Sequence of 
FIRRTL passes

Optimizations fit in 
reusable framework
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Application: optimizing highly-ported register files in BOOM, an open-
source RISC-V out-of-order core for the Rocket Chip Generator

Case study: implementing an optimizing transform
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The Rocket Chip Generator

• Parameterizable SoC Generator [1]

• Cache-coherent TileLink network

• Variable number of cores

• Rocket: 5-stage in-order

• BOOM: parameterized out-of-order [2]

[1] Asanović et al., “The Rocket Chip Generator,” Berkeley Tech 
Report, 2016.
[2] Celio et al. “The Berkeley Out-of-Order Machine (BOOM): An 
Industry-Competitive, Synthesizable, Parameterized RISC-V 
Processor,” Berkeley Tech Report, 2015.



How the multi-ported memory optimization works
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● Create multi-model simulator hierarchy

● Extract memory that is problematic for QoR

● Generate an FPGA-optimized memory model

○ Models exact target memory

○ Resource-efficient underlying BRAM

● Mapped independently from rest of circuit



How do we know this optimization works?

While FPGA simulation helps with pre-silicon verification, it brings new challenges.

A functional bug in the simulator can manifest as:

● An apparent functional bug in the target

● A timing irregularity in the target

● Nondeterminism of execution or host deadlock
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LIME: Automatic checking of decoupled models



LIME: Automatic checking of decoupled models
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● Checks LI-BDN properties with BMC

● Ensures model is cycle-accurate

● Targets UCLID5 modeling system

● Used to verify multi-port RAM model

Inputs: reference RTL & model RTL

Output: counterexample waveforms (if any)



Results of optimizing register files
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BOOM BOOM

BOOM BOOM

BOOM BOOM

VU9P FPGASame VU9P FPGA

4 cores ➨6 cores

Underlying 1R1W implementation maps 
efficiently to FPGA block RAMS (BRAMs)



Results of optimizing register files
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• FPGA resource utilization on Xilinx VU9P FPGAs (AWS F1 devices)

• Rx = x Rocket cores, By = y BOOM cores
• 33% less LUT utilization per core 
• Ample slack in BRAM count



Future work: multi-threading to save resources
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Why not borrow from software simulators and time-multiplex 
one copy of host logic to simulate N copies of a target block?

[1] Z. Tan et al, “RAMP Gold : A High-Throughput FPGA-Based Manycore Simulator,” DAC ‘10.
[2] M. Pellauer et al., “HAsim: FPGA-Based High-Detail Multicore Simulation Using Time-Division 
Multiplexing,” HPCA ‘12.
[3] Z. Tan et al., “A Case for FAME: FPGA Architecture Model Execution,” ISCA ‘10.
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Conclusion
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● We present Golden Gate, a compiler framework for FPGA simulators

● It includes a spec for simulators structured as dataflow networks

● We provide an API for heterogenous compiler passes

● Golden Gate open-sourced as part of FireSim @ https://fires.im

As a case study, we present a multi-cycle RAM optimization that 
significantly increases simulation capacity of a large Xilinx FPGA!

https://fires.im/

