
Golden Gate
Bridging The Resource-Efficiency Gap Between 

ASICs and FPGA Prototypes

Albert Magyar, David Biancolin, Jack Koenig, Sanjit Seshia, 
Jonathan Bachrach, Krste Asanović



Two major challenges of FPGA simulation

2

● Labor-intensive
● Chip might not fit

FireSim

Karandikar et al., “FireSim: FPGA-Accelerated Cycle-Exact 
Scale-Out System Simulation in the Public Cloud,” ISCA ‘18.



FireSim: The easy button for FPGA simulation

3

Target Architecture

Target Microarchitecture

Simulator Microarchitecture

FPGA Implementation

Host FPGA Platform

Target Workloads

Golden Gate Compiler Flexible SoC generators
User accelerator designs
Architectural experiments

“Batteries included” for the full stack!



Two major challenges of FPGA simulation

4

● Labor-intensive
● Chip might not fit



Why the chip won’t fit

5

● Common ASIC structures map poorly

○ Highly-ported RAMs

○ Content-addressable memories

○ Multiplexers

● Abundant memory resources are underutilized

○ Logic is relatively more expensive
Making the chip fit often means buying bigger FPGA!



6

How do we make the chip fit?
Golden Gate: an optimizing 

compiler for simulators



Golden Gate: a hardware compiler framework 

7

● Operating on concrete RTL target designs

● Producing cycle- and bit-exact FPGA simulators

● …structured as a network of communicating actors

● …relying on decoupling to ease per-cycle synchronization

● With a reusable API for FPGA-centric resource optimizations

With a basic optimization, we fit 50% more out-of-order cores per FPGA!



8

● Introduction

● Prior work in increasing FPGA capacity

● Golden Gate: an optimizing compiler for FPGA simulators

● Case study: adding an optimization to Golden Gate

● Verification of complex simulation models

● Conclusion



9

● Introduction

● Prior work in increasing FPGA capacity

● Golden Gate: an optimizing compiler for FPGA simulators

● Case study: adding an optimization to Golden Gate

● Verification of complex simulation models

● Conclusion



Partitioning to solve capacity “cliffs”

10

• Split design across multiple FPGAs

• Each FPGA is still under-utilized!

• Well put in HAsim†: “in order to maximize 
capacity of the multi-FPGA scenario we must 
first maximize utilization of an individual FPGA.”

† Pellauer et al., “HAsim: FPGA-Based High-Detail Multicore 
Simulation Using Time-Division Multiplexing” in HPCA 2011.



Decoupling

11

● FPGA prototype: one host FPGA clock = one simulated cycle

● Decoupled simulator: target and host time advance independently

○ Each target cycle may take multiple FPGA host cycles to simulate

● Software RTL simulators take this idea to the extreme



Clock gating: the simplest form of decoupling

12

input
output

clk
valid



You can save resources with decoupling

13

Efficient
1-Read, 1-Write 

RAM

Resource-hogging
4-Read, 4-Write 

RAM

With 4 host cycles to simulate 1 target cycle ➨ trade space for time!



Tradeoff: it now takes 4 host cycles to simulate 
one target cycle, but we save FPGA resources

14



Decoupling enables optimizations that 
can significantly reduce utilization

15

No tools to apply them automatically



Where prior work falls short

16

Target Architecture

Target Microarchitecture

Simulator Microarchitecture

FPGA Implementation

Host FPGA Platform

Target Workloads ● Paper idea: conceptual improvement in simulator 

architecture and/or microarchitecture arch

● Paper artifact: “artisanal” simulator based on idea

● Different goals: why write a compiler for RTL if 

most users don’t have working RTL to start with?

PhD student cleverness

Conceptual simulation stack



17

● Introduction

● Prior work in increasing FPGA capacity

● Golden Gate: an optimizing compiler for FPGA simulators

● Case study: adding an optimization to Golden Gate

● Verification of complex simulation models

● Conclusion



A compiler framework for FPGA simulators

18

Target RTL
Optimized, 
decoupled 
simulator

Guarding state updates
Transforming costly RAMs
Multi-threading host logic

These compiler passes are not RTL-preserving

• The generated simulator no longer implements the target’s RTL semantics

• But it must simulate them in a cycle-exact manner!

Golden Gate Compiler



Building blocks for Golden Gate

19

Strong model of simulator behavior

Infrastructure for hardware compiler development

Interface

Implementation

Latency-Insensitive Bounded Dataflow Networks [1]

FIRRTL: Flexible Intermediate Representation for RTL [2]

[1] Vijayaraghavan et al., “Bounded Dataflow Networks and Latency-Insensitive Circuits,” MEMOCODE ‘09.
[2] Izraelevitz et al., “Reusability is FIRRTL Ground: Hardware Construction Languages, Compiler 
Frameworks, and Transformations,” ICCAD ’17.



Golden Gate models simulator as a dataflow network

20Dividing target into multiple models enables composable optimizations!

Optimized 
Mapping

Un-optimized 
Mapping

Simulation 
Collateral



Latency-Insensitive Bounded Dataflow Networks*

21

● General design technique to avoid 
synchronous design constraints

● Replace synchronously timed 
signals with decoupled channels

BDNs: Bounded Dataflow Networks

Latency-Insensitive BDNs (LI-BDNs)
● Conform to a set of properties on both token values and the conditions 

under which tokens must be produced/accepted

● As a simulator: properties prescribe the behavior of tokens modeling 
inputs and outputs of components that are simulated.

* Vijayaraghavan et al., “Bounded Dataflow Networks and Latency-Insensitive Circuits,” MEMOCODE ‘09.



Compiler pass: RTL block to unoptimized LI-BDN

22

● Model the value of a given I/O on a particular cycle with a token

● Replace I/O with token queues

● Analyze netlist to find combinational I/O dependencies

● Transform RTL to a set of guarded atomic actions

○ Update target state when per-cycle synchronization is complete

○ I/O tokens are processed according to LI-BDN properties



LI-BDN structure guarantees freedom from deadlock and 
defines equivalence of two simulator components!

23

Helpful framework for inserting resource-
optimized simulator components!



Building blocks for Golden Gate

24

Interface

Implementation

Latency-Insensitive Bounded Dataflow Networks [1]

FIRRTL: Flexible Intermediate Representation for RTL [2]

[1] Vijayaraghavan et al., “Bounded Dataflow Networks and Latency-Insensitive Circuits,” MEMOCODE ‘09.
[2] Izraelevitz et al., “Reusability is FIRRTL Ground: Hardware Construction Languages, Compiler 
Frameworks, and Transformations,” ICCAD ’17.



FIRRTL hardware compiler framework (ICCAD ‘17)

● Extensive suite of tools for writing hardware compiler passes

● Aimed at helping separate RTL from low-level implementation details

Makes writing CAD tools for chip design accessible to a wide audience!
25



26

Golden Gate is structured as an extensible compiler

Sequence of 
FIRRTL passes

Optimizations fit in 
reusable framework



27

● Introduction

● Prior work in increasing FPGA capacity

● Golden Gate: an optimizing compiler for FPGA simulators

● Case study: adding an optimization to Golden Gate

● Verification of complex simulation models

● Conclusion



28

Application: optimizing highly-ported register files in BOOM, an open-
source RISC-V out-of-order core for the Rocket Chip Generator

Case study: implementing an optimizing transform



29

The Rocket Chip Generator

• Parameterizable SoC Generator [1]

• Cache-coherent TileLink network

• Variable number of cores

• Rocket: 5-stage in-order

• BOOM: parameterized out-of-order [2]

[1] Asanović et al., “The Rocket Chip Generator,” Berkeley Tech 
Report, 2016.
[2] Celio et al. “The Berkeley Out-of-Order Machine (BOOM): An 
Industry-Competitive, Synthesizable, Parameterized RISC-V 
Processor,” Berkeley Tech Report, 2015.



How the multi-ported memory optimization works

30

● Create multi-model simulator hierarchy

● Extract memory that is problematic for QoR

● Generate an FPGA-optimized memory model

○ Models exact target memory

○ Resource-efficient underlying BRAM

● Mapped independently from rest of circuit



How do we know this optimization works?

While FPGA simulation helps with pre-silicon verification, it brings new challenges.

A functional bug in the simulator can manifest as:

● An apparent functional bug in the target

● A timing irregularity in the target

● Nondeterminism of execution or host deadlock

31
LIME: Automatic checking of decoupled models



LIME: Automatic checking of decoupled models

32

● Checks LI-BDN properties with BMC

● Ensures model is cycle-accurate

● Targets UCLID5 modeling system

● Used to verify multi-port RAM model

Inputs: reference RTL & model RTL

Output: counterexample waveforms (if any)



Results of optimizing register files

33

BOOM BOOM

BOOM BOOM

BOOM BOOM

VU9P FPGASame VU9P FPGA

4 cores ➨6 cores

Underlying 1R1W implementation maps 
efficiently to FPGA block RAMS (BRAMs)



Results of optimizing register files

34

• FPGA resource utilization on Xilinx VU9P FPGAs (AWS F1 devices)

• Rx = x Rocket cores, By = y BOOM cores
• 33% less LUT utilization per core 
• Ample slack in BRAM count



Future work: multi-threading to save resources

35

Why not borrow from software simulators and time-multiplex 
one copy of host logic to simulate N copies of a target block?

[1] Z. Tan et al, “RAMP Gold : A High-Throughput FPGA-Based Manycore Simulator,” DAC ‘10.
[2] M. Pellauer et al., “HAsim: FPGA-Based High-Detail Multicore Simulation Using Time-Division 
Multiplexing,” HPCA ‘12.
[3] Z. Tan et al., “A Case for FAME: FPGA Architecture Model Execution,” ISCA ‘10.



36

● Introduction

● Prior work in increasing FPGA capacity

● Golden Gate: an optimizing compiler for FPGA simulators

● Case study: adding an optimization to Golden Gate

● Verification of complex simulation models

● Conclusion



Conclusion

37

● We present Golden Gate, a compiler framework for FPGA simulators

● It includes a spec for simulators structured as dataflow networks

● We provide an API for heterogenous compiler passes

● Golden Gate open-sourced as part of FireSim @ https://fires.im

As a case study, we present a multi-cycle RAM optimization that 
significantly increases simulation capacity of a large Xilinx FPGA!

https://fires.im/

